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Abstract - In this brief note, we review the quantile and 
unconditional quantile models, and then we propose a new 
Quantile Regression (QR) method that we call the Weighed 
Percentile Regression (WPR). Beforehand, recall that the 
main aim of these models is to estimate appropriate 
coefficients for given percentile, which is based on the rank 
of the dependent variable. Effectively, for a given explanatory 
variable, the impact can be heterogeneous on the outcome, 
and this depending on the rank (percentile) of outcome. For 
instance, the incidence of social assistance program can vary 
depending on the level of wellbeing or outcome.    The QR 
models are assumed to be helpful to show such heterogeneity 
in impact.   
 
Index Terms - About four, alphabetical order, key words or 
phrases, separated by commas (e.g., Camera-ready, FIE 
format, Preparation of papers, Two-column format). 

1- INTRODUCTION TO  THE QUANTILE REGRESSION (QR) 

Quantile regressions attempt to assess how the 
conditional quantile	ܳఛሺܻ|ܺሻ ൌ inf൛ݕ: ሻݕ௒|௑ሺܨ ൒ ߬ൟ, are 
modified when the determinants ܺ ∈ ܴ௣ of the outcome of 
interest vary. Remember that the definition of the quantile 
is:ݍఛሺܻሻ ൌ inf 	ሼݕ: ሻݕ௒ሺܨ ൒ ߬ሽ, or in some words, the lowest 
element (ݕ) of the random variable ܻ  among the elements that 
make the cumulative distribution  ܨ௒ሺݕሻ higher than the 
percentile of interest ߬. Also, it may be helpful to present 
another general formula for the estimation of the quantile. 
Formally, let: 

 ߩఛሺߤሻ ൌ ሺ߬ െ ߤሾܫ ൏ 0ሿሻߤ.  
 ߤ ൌ ሺݕ െ ܾሻ  

Thus, we have that   
 ߩఛሺߤሻ ൌ ሺ߬ െ 1ሻሺݕ െ ܾሻ   if    ݕ ൏ ܾ 
 ߩఛሺߤሻ ൌ 								 ሺ߬ሻሺݕ െ ܾሻ   if    ݕ ൒ ܾ 

Note that  
 

E ሾߩఛሺߤሻሿ =߬൫ߤ௬ െ ܾ൯ െ ሺ߬ െ 1ሻሺ߬௕ሻሺߤ௬ழ௕ െ ܾሻ 
 

As we can observe E ሾߩఛሺߤሻሿ  reacts its minimum where	ܾ ൌ
߬ :ఛ. Indeed, the first element is nil in this caseݍ ൌ ߬௕.  Also, 
the first component the predominant part. For instance, if  ߬ ൌ
0.5,  we wrongly select ܾ ൌ minሺݕሻ or maxሺݕሻ, we have that:  
 

1. E ሾߩఛሺߤሻ|ܾ ൌ 0.50	௠௜௡ሿ =ݕ ∗ ሺߤ௬ െ  ;(௠௜௡ݕ
2. E ሾߩఛሺߤሻ|ܾ ൌ  ;(௠௔௫ݕሺ	0.50	௠௔௫ሿ =ݕ
3. Eሾߩఛሺߤሻ|ܾ ൌ ௬ߤ൫	0.50		=				ఛሿݍ െ ௠௘ௗ௜௔௡൯ݕ ൅

0.25ሺߤ௠௘ௗ௜௔௡ െ   .௠௘ௗ௜௔௡ሻݕ

Thus, minimizing E ሾߩఛሺߤሻሿ  implies that: ܾ ൌ   . ఛݍ

ොఛݍ ൌ argmin௕:෍
1
݊

௡

௜ୀଵ

௜ݕఛሺߩ െ ܾሻ 

For the simple classical quantile regression, we can be limited 
to the linear for as: 
 

መఛߚ ൌ argminఉ:෍
1
݊

௡

௜ୀଵ

௜ݕఛሺߩ െ  ሻߚܺ

Thus in the case where the predictive part gives ܺߚመఛ ൎ  ොఛ theݍ
found parameters can be interpreted as the impact of 
covariates on ܺ at percentile ߬.	 

2- INTRODUCTION TO  THE  UNCONDITIONAL QUANTILE 

REGRESSION (UQR) 

Fripo	et	al.	(2009)	have	proposed	a	new	model	in	order	to	
overcome	 the	conditional	estimates	of	 the	QR,	 since	 the	
practitioners	 are	 more	 interested	 to	 the	 impact	 of	
explanatory	variables	on	the	unconditional	distribution	of	
outcome.	Remember	that,	with	QR	model,	we	estimate:		

	
ఛߚ ൌ ሺିܨଵሺ߬|ݔ ൅ ሻݔ݀ െ 	ݔ݀/ሻሻݔ|ଵሺ߬ିܨ

The	rank	of	the	predicted	component	can	differ	from	that	
of	 the	 outcome,	 or	 also,	with	 and	without	 the	marginal	
change	in	ݔ,	especially	if	ݔ	is	a	dummy	variable	that	varies	
from	0	to	1.		However,	with	the	UQR	regression,	we	have	
that:	
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ఛߚ ൌ
ሻ݌ఛሺݍ߲

݌݀
݌߲
ݔ݀

ൌ ሺܲݎሾݕ ൒ ݔ|ఛݍ ൅ ሿݔ݀

െ ݕሾݎܲ	 ൒ /ሿሻݔ|ఛݍ ௬݂ሺݍఛሻ	

The	latter	expression	is	tightly	related	to	what	we	call	the 
Influence Function (IF). The Re-centered Influence 
Function (RIF) is as follows:  

 
;ݕ൫ܨܫܴ ;ఛݍ ௬൯ܨ ൌ ఛݍ ൅	ሺ߬ െ ݕሾܫ	 ൒ /ሿሻݔ|ఛݍ ௬݂ሺݍఛሻ 

Fripo	et	al.	 (2009)	suggest	 to	use	 this	 transformed	
dependant	 variable	 with	 the	 OLS	 regression	 to	
estimate	the	UQR	coefficients.			
	

3- THE WEIGHED PERCENTILE REGRESSION (WPR) 

Starting from the fact that, for practitioners, the main aim by 
using the quantile regression models is to estimate the 
coefficients for the group of population with outcomes ranked 
closely to the percentile of interest, and consequently, it is 
trivial that these observations should contribute the most in 
the prediction of the model.  
 

With the new proposed WPR model, the basic idea 
is to attribute large weights for those with levels of outcome 
that are close to the percentile/quantile of interest and low 
weights for those with fare levels of outcome.   An easy way 
is to start by estimating a Gaussian normal distribution around 
the percentile of interest, and this, using the Kernel method. 

 
 Of course, the level of the bandwidth can control for 

the importance attributed to the observations around of the 
percentile of interest. In our illustrative examples that follow, 
the optimal bandwidth, suggested by Silverman (1986), is 
divided by 3 to increase the precision of the estimated 
coefficients.   Thus, the steps of the PWR model are: 
 Generating the percentiles of the dependent 

variable; 
 Estimating the Gaussian density around the 

percentile of interest. These densities are what we 
call the percentile weights; 

 Running the weighed OLS regression with 
percentile weights.  

	

4- ESTIMATIONS AND ARTIFICIAL EXAMPLES 

Mainly, to check the relevance of the different models, we 
propose to construct a set of artificial examples for which the 
true values of the coefficients are assumed to be known 
without regressions. For instance, let ݔ be a random variable, 
if we construct:	ݕ ൌ  the relevant models must give a ,ݔ2
coefficient 2 for  the explanatory variable ݔ. This will be the 
case using the OLS model, or even with the QR model, and 
this, for any percentile.  

 
Let ݔଵ be an explanatory variable generated with Stata, and 
this, based on the following rules: 
 
/*Artificial Example A1*/ 
#delimit cr 
set seed 1234 
clear 
set obs 1000 
gen     x1= _n-1 
gen p=_n/1000 
gen income =  1000 + p*x1 + 0.00001*uniform()  
 

As we can observe in this first easy example, we only use one 
continues explanatory variable. Remember that _n is the 
position of the observation in Stata. Thus, the percentile is 
equal to 1 at the last observation (we have 1000 observations).  
Assume that the percentile of interest p=0.15. Also, assume 
that the standardized expected change in income between 
percentiles 0.149 and 0.151 is used as a numerical proxy of 
the derivative of income with regards to x2. We have that:  
- Change in income = (0.151*150 - 0.149*148) / (150-148) 

= 0.299.  
- In general, we will find that the numerical 

derivative:	߲݅݊ܿ݁݉݋ ଵൗݔ߲ ቚ
௣ୀ௣∗

ൌ  Thus, in this .∗݌2	

artificial example, we have a clear idea on the accurate 
level of the coefficient of ݔଵ.   
 

The natural question that may raise at this stage is: Can each 
of the quantile regression, the unconditional quantile 
regression and the new proposed percentile weight regression 
models estimate accurately this coefficient at different levels 
of percentile? Further, how one can determines the true value 
of the coefficient for the different artificial examples?   
 
Two methods are proposed to assess the true of coefficients 
for a given percentile of interest: 
- The first is to use the numerical derivative (command 

dydx of Stata).  
- The second is to use the derivative locally non 

parametric regression, available already in DASP.  
 

In the following table, we show the results of estimates at 
different percentiles and using different methods. 

Table 1: Estimated coefficients: Example A 

 

Percentile of 
interest 

True 
Value 

QR UQR WPR 

0.05 0.1 1 0.06 0.12 
0.15 0.3 1 0.21 0.3 

0.25 0.5 1 0.56 0.5 

0.35 0.7 1 0.95 0.7 

0.45 0.9 1 1.34 0.9 

0.55 1.1 1 1.63 1.1 

0.65 1.3 1 1.77 1.3 

0.75 1.5 1 1.69 1.5 

0.85 1.7 1 1.3 1.7 

0.95 1.9 1 0.54 1.88 
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Figure 1: Estimated coefficients: Example A 

 
Surprisingly, only the new proposed method (PWR) 

enables to estimate consistent coefficients, and this based on 
the expected true values of the coefficient. Note that, for the 
quantile regression method, the Stata qreg module is used. For 
the unconditional quantile regression (UQR), the Fripo et al. 
(2009) method is used (see also the attached do file) and 
precisely the rifreg Stata command.  Obviously, among the 
questions that can raise is: Why the QR model gives a 
constant coefficient for ݔଵ that is equal to one? In reality this 
result is not strange for the QR model because of the form of 
the artificial example. Mainly, for QR models, when we have 
the predicted outcome:	ݍఛሺܻ|ܺሻ ൌ ఛܥ ൅ ߬∀		ܺߚ ∈ ሾ0,1ሿ, and 
when we have an homoscedastic error term: ܸሺߝ|ܺሻ ൌ  , ଶߪ
the model corresponds to the case of constant translation 
model with homogenous slops. In this, case, only the constant 
coefficient (ܥఛ) changes with the change of the percentile of 
interest	߬ (See also P. Givord & X. Dhaultfoeuille, 2013).  

 
/*Artificial Example A2*/ 
#delimit cr 
set seed 1234 
clear 
set obs 1000 
gen     x1= _n-1 
gen p=_n/1000 
gen income =  2000+ p*x1 + 60*uniform()  
qreg income x1, quantile(0.1) 
predict  q_1 
qreg income x1, quantile(0.2) 
predict  q_2 
qreg income x1, quantile(0.8) 
predict  q_3 
qreg income x1, quantile(0.9) 
predict  q_4 
line q_* x1, legend(order(1 "p=0.1" 2 "p=0.2"  3 "p=0.8"  4 "p=0.9" )) 
 

Figure 2: Estimated coefficients: Example A2 

 

As we can observe starting from this example, the slope is 
equal to one for the different curves where each lies the ݔଵ to 

the predicted outcome. This also corresponds to: 
డ௤ොഓ
డఛ

డఛ

డ௫భ
.  

 
 Now we present another model where the correlation 
between the explanatory variable (ݔଵ) and the percentile 
variable is nil. This model corresponds also to what we call 
the scale translation model (See P. Givord & X. Dhaultfoeuille, 
2013).  In this case, the coefficient of ݔଵ starts to be equal to 
߬	. 
 
/*Artificial Example A3*/ 
#delimit cr 
set seed 1234 
clear 
set obs 1000 
gen     x1= uniform()*1000 
gen p=_n/1000 
gen income =  2000+ p*x1 + 60*uniform()  
qreg income x1, quantile(0.1) 
predict  q_1 
qreg income x1, quantile(0.2) 
predict  q_2 
qreg income x1, quantile(0.8) 
predict  q_3 
qreg income x1, quantile(0.9) 
predict  q_4 
line q_* x1, legend(order(1 "p=0.1" 2 "p=0.2"  3 "p=0.8"  4 "p=0.9" )) 
 

Figure 3: Estimated coefficients: Example A3 

 
 
Thus, the QR model absorbs the influence of the explanatory 
variable rank from the estimated coefficient, as we can deduce 
by comparing the artificial examples A2 and A3. 
 
QR, low percentiles and biased coefficients  
At this stage, we propose to discuss how estimates at low 
percentiles can depend on the true impact at highest 
percentiles. To show this in clear, in this artificial example, it 
is assumed that the level of the true values of the coefficient 
is always 0.8 when the percentile of interest is lower than 0.5 
and 1.2 if the percentile is higher than the half.   The values 
of ݔଵ are equal to _n (or: 1, 2, 3…, etc.).  

Using the QR regression model, we observe that this 
this model overestimate the coefficient for low percentiles 
and is close to the true value for highest percentiles (see red 
line in the Figure 4). Why this is the case? Assume that the 
QR algorithm gives a coefficient of 0.1 for the percentiles 
between 0.1 and 0.5. The generated error with this coefficient 
will be high for the observations highest percentiles (higher 

0
.5

1
1

.5
2

C
of

fic
ie

nt
 o

f X
2

0 .2 .4 .6 .8 1
Pecentiles

True value Quantile regression

Unconditional Quantile Regression Weighed Percentile Regression

15
00

20
00

25
00

30
00

Li
ne

ar
 p

re
di

ct
io

n

0 200 400 600 800 1000
x2

p=0.1 p=0.2
p=0.8 p=0.9

20
00

22
00

24
00

26
00

28
00

30
00

Li
ne

ar
 p

re
di

ct
io

n

0 200 400 600 800 1000
x2

p=0.1 p=0.2
p=0.8 p=0.9



  Mayo, 2016, Araar, A. 
 PMMA PEP NOTE SERIES 
 4 

than 0.5), and it is equal approximately to: 0.5 ∗ ሺ0.8 െ
1.2ሻߤ௫భ

∗   and ߤ௫భ
∗    is the average ݔଵ   for the observations 

between 501 and 1000. As an approximation, the average of 
the absolute errors will be about 0.5*0.4*750=150.  Instead 
of this, the QR algorithm, can force to reduce the error when 
the disturbance is high. For instance, if the algorithm gives a 
coefficient of 1.2 for the percentile 0.2, the average error is 
equal to: 0.5*0.4*250=50. This fact explains why the QR 
estimates can be biased in presence of heteroscedasticity.   
What can be the case if we reduce the disturbance of the 
observations with highest values of the x-axis? As we can 
observe, in data 2, the values of the explanatory variable are 
the similar to those of data 1 for the percentiles between zero 
and half.  For the second half, the values of the explanatory 
variable have changed from (501,502…1000) to (500.02, 
500.04, …, 510). Obviously, the income rank remain the 
same, as well as the true values of coefficients.   As it is 
expected, for the lowest percentiles, The QR starts to give 
better results until the percentile 0.25. This is because the 
algorithm starts to estimate low errors for the second half 
group, and when it gives the true coefficient 0.8.  

 
As a last investigation, we show how the QR 

coefficients well estimated when we weight the QR model by 
the inverse of the absolute distance between the dependent 
variable and the quantile of interest:1/absሺy െ qሺτሻሻ. As we 
can observe, when less importance is given to the error that is 
fare from the percentile of interest, the estimated coefficients 
are more accurate. Note that this application is simply for 
illustration, and it is not tested for general models.   
 
/*Artificial Example A4*/ 
#delimit cr 
set seed 7777 
clear 
set obs 1000 
 
/*DATA1*/ 
    gen      x1  = _n 
    gen income1  = 20+ 0.8 * x1 if p <= 0.5 
replace income1  = 20+ 1.2 * x1 if p >  0.5 
 
/*DATA2*/ 
    gen        x2 = _n            in   1/500 
replace        x2 =  500+_n/100    in 501/1000 
    gen income2  = 20+ 0.8 * x2  if p <= 0.5 
replace income2  = 20+ 1.2 * x2  if p >  0.5 
 
gen p=_n/1000 

 
 

Figure 4: Estimated coefficients: Example A4 

 
 
 
Now, it may be helpful to discuss the difference between the 
PWR and the QR models. The coefficients of the PWR model 

are interested to assess exactly:  
డ௬

డ௫
ቚ
௣ୀఛ

. Thus, with this model, 

we can avoid the influence of correlation between the 
explanatory variable and the rank of the predicted part. 
Indeed, mainly, the percentile of interest must be related to 
the depended variable and not to the predicted part. Further, 
the predicted component for the observations that are fare 
from the percentile of interest will not influence the estimated 
coefficients. Obviously, we cannot say that one statistical 
approach or model is wrong, except where the latter do 
estimate what we target.  Basically, it may be helpful to be 
more careful when we interpret the coefficients of the QR 
model.   

MULTIVARIATE ARTIFICIAL EXAMPLES  

At this stage, we propose to increase partially the complexity 
of the artificial example, and this by adding another 
explanatory variable ݔଵ that can be partially correlated 
with	ݔଶ. 
 
/*Artificial Example B1 */ 
#delimit cr 
set seed 1234 
clear 
set obs 1000 
gen     x1=  3* _n^1.1 
gen     x2= _n-1 
gen p=_n/1000 
gen income =  1000 + x1 + p*x2 + 0.00001*uniform() 

 
What is the trick to assess the accurate expected coefficient of 
 ?or a set of other covariates are in the model	ଶݔ ଵ whenݔ
Remember that, for the locally linear non parametric approach 
we cannot use more than one explanatory variable, and this is 
also the case for the numerical derivative approach. To 
overcome this difficulty, it is suggested the following trick:   
- Estimating the model with both explanatory 

variables ݔଵ and 2ݔ; 
- Removing ߚଶݔଶ	from the dependent variable; 
- Performing the non-parametric regression of the 

residual on	ݔଵ. 
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Figure 5: Estimated coefficients: Example B1 

 

As we can observe, the new proposed PWR method continues 
to function well. Now, we propose another example, where 
v2 is not fully linear.  
/*Artificial Example B2 */ 
#delimit cr 
set seed 1234 
clear 
set obs 1000 
gen     x1= -(_n-1)^0.5 
gen     x2=  20* _n^2 
gen p=_n/1000 
gen income =  1000 + x1+ p*x2 + 0.00001*uniform() 
 
Figure 6: Estimated coefficients: Example B2 

 
Among the main objectives of this note is to propose a new 
approach that can estimate the quantile regression model 
when the ranking variable is different from the dependent 
variable. For this end, we propose to simply ranking the 
observations according to the ranking variable of interest (for 
instanceݔଵ), and then to run the PWR model. 
/*Artificial Example B3 */ 
#delimit cr 
set seed 1234 
clear 
set obs 1000 
gen     x1=  3* _n^1.5 
gen     x2= -(_n-1) 
sort x2 
gen p=_n/1000 
gen income =  1000 + x1+ p*x2 + 0.00001*uniform() 
 

Figure 7: Estimated coefficients: Example B3 

 
 

DUMMY VARIABLE AND ARTIFICIAL EXAMPLES  

At this stage, we focus on the consistence of the coefficients 
of the dummy explanatory variable.  Mainly, for the artificial 
example, we assume that the treatment variable is a dummy 
variable. Further, we assume that, for each percentile of 
interest, we a population group that represents this percentile. 
Some individuals of this group are treated (dummy 
variable=1) and the rest are not treated (dummy variable=0). 
With a sample size of 4000 observations, the percentile 1/200 
will be represented by the first 20 observations as an 
approximation, the percentile 2/200 by the next 20 
observations, and so on. Thus, we have 200 percentile-groups. 
For simplicity, we assume that for each percentile group, 10 
observations are treated and 10 are not treated. As we can 
observe in the Stata code above, the impact of the treatment 
can be summarized as follow: 

 10  if p in 0.0 to 0.2; 
 20  if p in 0.2 to 0.4; 
 26  if p in 0.4 to 0.6; 
 32  if p in 0.6 to 0.8; 
 44  if p in 0.8 to 1.0; 

 
/*Artificial Example C1 */ 
#delimit cr 
set seed 1234 
clear 
set obs 4000 
 
gen     x1=  3*_n^1.2 
gen     x2= (_n-1) 
 
gen v=int((_n-1)/20)+1 
gen p=min(1,v/200) 
 
gen treatment = . 
local cho=1 
forvalues i=1(10)4000 { 
local j=min(`i'+10, 4000) 
dis `i' "  " `j' 
replace treatment=( `cho' == 1 ) in `i'/`j' 
local cho = `cho'*(-1) 
} 
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gen           x3= treatment *10 if p>=0.0 & p<=0.2 
replace     x3= treatment *20 if p> 0.2 & p<=0.4 
replace     x3= treatment *26 if p> 0.4 & p<=0.6 
replace     x3= treatment *32 if p> 0.6 & p<=0.8 
replace     x3= treatment *44 if p> 0.8 & p<=1.0 
gen income =  1000 + x1+ p*x2 + x3+  0.00001*uniform() 
 
Table 2: Estimated coefficients: Example C 

 

 
 
 

 

 

 

 

 

As we can observe, the WPR method continues to produce 
more consistent estimates of coefficients even with dummy 
variable (treatment). However, we can add the following 
remarks for the QR model. First, the results of the QR 
regression becomes similar to the expected or true values only 
for the case where the treatment variable is the explanatory 
variable of the model. Introducing other variables can affect 
two things: 1- The predictive power of the treatment variable, 
and this, if the latter is correlated with the rest of covariates. 
2- Most important, is the marginal impact on the distribution 
of conditional quantile when the rest of explanatory variables 
are kept. Obviously, in our example, the impact of treatment 
was conceived in the artificial example to do not change the 
income rank.   
 

PREDICTIVE POWER AND ARTIFICIAL EXAMPLES  

At this stage, we explore another important issue that concern 
the predictive power of the model. However, before going 
fare, it may be helpful to answer the following question: Is it 
the predictive power of local models around the percentile of 
interest the most important or that of the global model, and 
this, without focusing on a given percentile – simple OLS for 
instance?  
 
Assume that the first median group (p: 0 to 0.5), the model 
fits perfectly the outcome, while for the rest (p: 0.5 to 1) the 
predictive power is practically nil.  
- If the percentile of interest is 0.25 and the predictive 

power of the model is high between percentiles 0.24 and 
0.26, we may be interest a local regression and a lower 
bandwidth to better estimate the coefficients of the model 
around the percentile of interest. 

- In another case, if the predictive power of the model 
between percentiles 0.24 and 0.26 is very low, we 
may be interested to give more importance to the 

observations that are relatively fare from 0.25 to 
reduce the sub-sample bias: for instance the p in 0.2 
to 0.3. This can be done by increasing the level of 
the bandwidth. 

- /*Artificial Example G */ 
- #delimit cr 
- set seed 1234 
- clear 
- set obs 1000 
- local A= (`i'*10)// i varies from 1 to 10 : it 

can control the predictive power of the model 
- gen      x1=  `i'* _n^0.8 
- gen      x2= (2.5- 0.5*`i'*uniform())*_n 
- gen  income =100+x1+_n/100*x2+uniform()*`A' 

 

 
 

As a general rule, one can start by estimating the 
local model (keeping observation between p-0.01 to p+0.01, 
and p is the percentile of interest) and then, select an 
appropriate bandwidth that can have an inverse relationship 
with for instance the R2 of the local model.  The proposed 
WPR approach is implicitly based on this idea.  For the 
artificial example, we will control the level of the predictive 
power of the model by changing the importance of the added 
random component.  

 
As we can observe from the figure above, WPR approach 
continues to show its relevance for the consistency of the 
estimated percentile coefficients.  
 

BRIEF CONCLUSIONS 

Based on these investigations we have that: 
- Our analysis show that we need to do better to 

estimate consistent coefficients of the percentile 
models.   
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- Obviously, we recognize the limitation of the 
explorative approach used in this note, but we hope 
that other econometric researchers can help in 
developing a consistent framework.    

- Meanwhile, these explorations helps to show the 
limitations of the usual QR and UQR models or the 
need of better interpreting their coefficients. 
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