Expected poverty changes with economic growth and redistribution

Abdelkrim Araar*

10th April 2012

Abstract

This paper focusses on the theoretical and computational framework in order to estimate the impact of economic growth or that of the change in inequality on poverty. During the last few years, there was a growing interest to perform such estimations and to anticipate the implication of some strategic policies, that can be adopted to meet the Millennium Development Goals (MDG, henceforth) and then to cut poverty by half. As is illustrated in this paper, estimated poverty changes may be less precise or even wrong. Precisely, this bad estimation occurs when the distributive changes are non marginal, whereas the used approach is based on the assumption of marginal changes. In an other case, and where the estimation is implicitly based on a parameterized model of the distribution of income, results may be less precise when the predicted distribution cannot reproduce perfectly that derived with the sample. In this study, we have used some household surveys of the African countries, as well as, fictive data to show the level of the error that can occur, and this, by using some popular methods. Further, we propose a new numerical method to allow to estimate accurately the impact of the distributive changes on poverty.

Key words: Poverty, inequality, poverty elasticities, redistribution

JEL Classification: D63, I32, O12.

Financial support was provided by the Poverty and Economic Policy (PEP) Research Network, which is financed by the Government of Canada through the International Development Research Centre and the Canadian International Development Agency, and by the Australian Agency for International Development.

* Département d’économique and CIRPÉE, Université Laval, Québec, Canada; Email: aabd@ecn.ulaval.ca
1 Introduction

Algebraically, one can use the tangent or the first derivative of a given function to assess the impact of marginal change of the independent variable on the dependant variable. Kakwani (1993) has developed the theoretical framework to assess the impact of marginal change in average income -growth- or in inequality -redistribution- on poverty. This work was followed by others to show the impact of other designs of change in the distribution on poverty. The main assumption in these works was the marginal nature of the simulated distributive change. However, empirical works give less attention to this assumption and the developed methods were applied even if the simulated changes are not marginal.

In the literature about the nexus between growth, redistribution and poverty, we can distinguish between two forms of explorations. The first one, is retrospective and aims to show the contribution of growth and redistribution into the observed change in poverty between two periods. The second form is prospective and concerns the projection of poverty by using the most updated distribution of income and by simulating a predefined scheme of change in the distribution of incomes.

There are two main estimates of interest for the prospective form. The first concerns simply the estimate of change in poverty implied by the change in the distribution of income. This impact is also called the semi-elasticity of poverty with respect to a given component that control the distributive change, like growth. The other estimate of interest is the elasticity of poverty with respect to a given component. While the first estimate focusses on the absolute level of change in poverty, the second shows the relative change, and this, according to the initial level of poverty. Klasen and Misselhorn (2008) have been discussed the virtue of estimating the semi-elasticity. Indeed, the semi-elasticity is a straightforward indicator for anticipating the poverty reduction in regions and on the global level, and this is critical for assessing the progress towards meeting the first Millennium Development Goal. Usually, the MDG target higher -non marginal- reductions in poverty, which requires in their turn, larger increases in economic growth for the long-term. This justifies also the importance to look for an accurate method to estimate the expected poverty changes with the simulated non marginal distributive changes.

In this paper, our main objective is to recall the different methods used to
assess the projected change in poverty and their performance. Obviously, even if the performance of these methods is discussed with the semi-elasticity estimator, these results are sufficient to develop a clear idea about the performance of these methods for the estimation of elasticity.

The rest of the paper is organized as follow. In the next section, we will present the theoretical framework for assessing the expected poverty changes with growth or redistribution. In this section, we propose also a new numerical approach, which is based mainly on the estimation of the density of the distribution of incomes with the corrected boundary Gaussian Kernel estimator. In Section 3, we will illustrate the different methods, and this, by using real household surveys, and also, fictive data. Finally, some concluding remarks are reported in Section 4.

2 Anticipated changes in poverty: the theoretical framework

Formally, for the class of additive poverty indices, if we denote the poverty index by \(P(z) \), the change in poverty is defined as follows:

\[
\Delta P(z) = \int_0^z \pi(z, y) \Delta f(y) dy
\]

where \(\pi(z, y) \) denotes the contribution to the total poverty of the individuals with income equals to \(y \). For instance, for the FGT index, this contribution equals to \((1 - y/z)^\alpha_+ + x_+ = max(x, 0)\). Let \(M(\gamma_s) \) be the map of change in incomes with the scheme \(s \)-growth or redistribution-. We assume that the parameter \(\gamma_s \) expresses the intensity of change. The semi-elasticity of poverty with respect to \(s \) will be defined as follows:

\[
\kappa_s = \frac{\partial P}{\partial \gamma_s}
\]

whereas the elasticity of poverty with respect to \(s \) is given by:

\[
\epsilon_s = \frac{\kappa_s}{P}
\]

The total impact on poverty implied by distributive change, controlled by the map \(M(\gamma_s) \) is:

\[
\Delta P(z) = \kappa_s d\gamma_s
\]

3Note that the elasticity is simply the estimated semi-elasticity normalized by the initial level of poverty.

4For instance, in the case of growth, we have that \(M(\gamma_{growth}) : y_i \rightarrow y_i(1 + \gamma_{growth}) \).
2.1 The counterfactual approach

At this stage, we begin the presentation of methods of estimation and we begin by the simplest among them. The counterfactual approach is based on estimating the difference between the poverty of the counterfactual distribution and that of the initial distribution. For instance, if our aim is to estimate the change in poverty, generated by the economic growth of 1%, we begin by constructing the counterfactual distribution. Formally, if we denote the level of economic growth by \(g \), the counterfactual income \(y^c \) can be defined as follows:

\[
y^c_g = (1 + g)y
\]

(5)

How can be the map of change that can control the change in inequality? If we focus on the inequality measured by the Gini index, an increase in inequality by 1%, say, can be done in a very large number of ways, each of them involving different transformations of the original income distribution.

The different maps of change in inequality will generate different impacts on poverty, depending on the precise nature of the distributive change that leads to it. A general type of distributive change that can be handled nicely from an analytical perspective spreads all incomes away from the mean by a proportional factor \(\lambda \). It corresponds, roughly speaking, to an increased bi-polarization of incomes away from an unchanged mean\[^5\]. Such bi-polarization is equivalent to adding \((\lambda - 1)(y - \mu)\) to each income. This implies also that the counterfactual distribution to simulate the redistribution effect equals to:

\[
y^c_r = y + (\lambda - 1)(y - \mu)
\]

(6)

increased bipolarization

Note that this bi-polarization does not affect average income. Further, one can easily prove that the proportional increase in Gini index with this scheme equals to \((\lambda - 1)\)\[^6\].

Now, if one focuses on the precision of the counterfactual approach, we can expect that, in general, with the availability of large household surveys, the counterfactual approach will work better with the marginal, as well as, the non marginal

\[^5\]Here we recall that the derived elasticity of poverty with respect to inequality, proposed by Kakwani (1993) have this scheme of change. For more details, see also Wolfson (1994) and Duclos and Échevin (2005).

\[^6\]See for this Duclos and Araar (2006).
distributive changes except for the case of the estimation of the impact on head-count index. Indeed, when the change is marginal, individuals that may escape poverty are those with incomes is closest to poverty line. Formally, their proportion equals to the level of density function at poverty line. When we use the household surveys, we cannot observe directly this population group since the sample may not contain the observations with incomes equal exactly to the poverty line. In such case, and by assuming the continuity in the distribution of incomes at population level, one can estimate the density function, by using for instance the Kernel estimator, and then, estimate the impact on poverty. In general this method will give more accurate results to be inferred to the whole population, as we can discover later.

2.2 Marginal changes and analytical approach

Under the assumption of marginal changes in average income or inequality, the analytical-algebraical- approach may be used to assess the impact of these changes on poverty. These developments are useful to expect the impact of the different potential governmental reforms on poverty or inequality. For instance, as indicated already, the estimated semi-elasticity of poverty with respect to income growth can serve to assess the impact of an expected economic growth on poverty. Further, this semi-elasticity can also be used to estimate the required growth to achieve a given level of reduction in poverty. When the FGT poverty index is used to assess poverty and when growth refers to the marginal change in average income, the overall growth semi-elasticity (κ_g) of poverty is given by:

$$
\kappa_g = \begin{cases}
-z f(z) & \text{if } \alpha = 0 \\
\alpha [P(z; \alpha) - P(z; \alpha - 1)] & \text{if } \alpha \geq 1
\end{cases}
$$

(7)

where z is the poverty line, $f(z)$ is the density function at level of income z, and $F(z)$ is the cumulative distribution function (the headcount at level of income z). The overall inequality semi-elasticity (κ_r) of poverty when growth is nil is given by:

$$
\kappa_r = \begin{cases}
(\mu - z) f(z) & \text{if } \alpha = 0 \\
\alpha [P(z; \alpha) + (\mu/z - 1)P(z; \alpha - 1)] & \text{if } \alpha \geq 1
\end{cases}
$$

(8)

As shown latter, this analytical approach gives more accurate results when the simulated growth or redistribution is small.

7See Foster, Greer, and Thorbecke (1984).
2.3 The parameterized approach

Another way to estimate the expected changes in poverty is by modeling the distribution of income. Subsequently, one can derive the intrinsic formulas to define the expected change in poverty implied by growth or by redistribution. Many functional forms were proposed in the literature to model the distribution of incomes. Among them, the popular Log-Normal distribution function. Bourguignon (2002) has shown that when the distribution of incomes follows a Log-Normal distribution with an average μ and a standard deviation σ, the head-count can be defined as follows:

$$P(z; \alpha = 0) = \Phi \left[\left(\frac{\log(z/\mu)}{\sigma} \right) + \frac{\sigma}{2} \right]$$

(9)

where Φ denotes the cumulative normal distribution function. For the poverty headcount index, its growth semi-elasticity is defined as follows:

$$\kappa_g = \frac{1}{\sigma} \phi \left[\left(\frac{\log(z/\mu)}{\sigma} \right) + \frac{\sigma}{2} \right]$$

(10)

where $\phi(.)$ denotes the normal density function. For the poverty gap and using the formulas $P(z; \alpha = 1) = (1 - \mu_p/z)P(z; \alpha = 0)$, where μ_p denotes the average income within the poor group, we find that:

$$\kappa_g = -\frac{\mu_p}{z} \Phi \left[\left(\frac{\log(z/\mu)}{\sigma} \right) + \frac{\sigma}{2} \right]$$

(11)

As showed by Aitchison and Brown (1957), for the Log-Normal distribution, the Gini index is defined as follows:

$$G = 2\Phi \left(\sqrt{\sigma/2} \right) - 1$$

(12)

When it is assumed that the change in redistribution do not alter with the Log-Normal form of the distribution (changing simply the level of parameter σ), the semi-elasticity due to inequality changes is defined as follows:

$$\kappa_\sigma = \phi \left[\left(\frac{\log(z/\mu)}{\sigma} \right) + \frac{\sigma}{2} \right] \left[\frac{1}{2} - \left(\frac{\log(z/\mu)}{\sigma^2} \right) \right]$$

(13)

Of course, one can use the derivation in chain and assess the semi-elasticity of poverty with respect to the Gini index when the change in inequality is controlled by the parameter σ.\[9]

Is that the parameterized approach better than the analytical one? As we will discover later in our application, even if the predicted distribution is slightly different from the observed one, the estimated impact of distributive changes on poverty may contain a non neglected error term.

2.4 The numerical approach

The numerical approach, proposed in this paper, is based mainly on the estimation of the proxy of the true density function of the distribution of incomes. Precisely, for this end, we propose the use of the Gaussian Kernel estimator. Note that the usual Kernel estimator is a straightforward method for estimating the density function without specifying beforehand its form.\[10] For more precision in the estimation of this density, we propose to correct the bias of bounded distribution.\[11] Formally, the expected change in headcount implied by the economic growth equals to:

$$\Delta P(z; \alpha = 0) = -\int_{z/(g+1)}^{z} f(y)dy$$ (14)

For the numerical computation, one can estimate the kernel density function within the income range $[0, z]$,\[12] then can use the trapezoidal rule for the numerical integration.

How about the impact of growth on poverty gap? This impact may be defined as follows:

$$\Delta P(z; \alpha = 1) = -\int_{0}^{z/(g+1)} f(y)dy - \int_{z/(g+1)}^{z} (gy/z)f(y)dy - \int_{z/(g+1)}^{1} (1 - y/z)f(y)dy$$ (15)

The component $C1$ indicates the reduction in poverty gap attributed to the improvement in wellbeing of those that continue to be poor. The component $C2$ indicates the reduction in poverty gap attributed to those that escape from poverty

\[9]\text{Here we have } \sigma = \sqrt{2\Phi^{-1}((G + 1)/2)}.
\[10]\text{See for instance Silverman (1986) and Duclos and Araar (2006).}
\[11]\text{For more details, see the Appendix I.}
\[12]\text{For instance, } y \in \{0, a, 2a, \ldots, na = z\} \text{ and } n = 1000.
with the economic growth. When the growth g converges to zero, the component $C2$ may be neglected. However, neglecting this part, when growth is non marginal, may induce a non neglected error. Here also, we can use the numerical integration to estimate the two components $C1$ and $C2$, and then, we can sum them in order to assess the total impact of growth on poverty. Using the same approach, one can show that the impact of growth on poverty severity is as follows:

$$
\Delta P(z; \alpha = 2) = -\int_{\frac{z}{1+\gamma}}^{\frac{z}{1+\gamma}} (gy(gy - 2(z - y))/z^2) f(y) dy - \int_{\frac{1 - y/z}{\lambda}}^{\frac{z}{1+\gamma}} (1 - y/z)^2 f(y) dy
$$

(16)

For the increase in inequality with the bi-polarization scheme and when $z < \mu$, the impact on headcount is:

$$
\Delta P(z; \alpha = 0) = \int_{z}^{(z + (\lambda - 1)\mu)/\lambda} f(y) dy.
$$

(17)

Thus, in this case, the headcount will increase. In the inverse, if $z > \mu$, we must observe a decrease in headcount and the impact is given by:

$$
\Delta P(z; \alpha = 0) = \int_{(z + (\lambda - 1)\mu)/\lambda}^{z} f(y) dy.
$$

(18)

As discussed also by Araar and Duclos (2010), the sign of the impact will depend on the difference between the poverty line (z) and the average income (μ). For the poverty gap and where $z < \mu$, the impact on poverty will take the following form:

$$
\Delta P(z; \alpha = 1) = \int_{0}^{z} ((\lambda - 1)((\mu - y)/z)f(y) dy
$$

(19)

$$
+ \int_{z}^{(z + (\lambda - 1)\mu)/\lambda} [((z - \mu) + \lambda(\mu - y))/z] f(y) dy
$$

$$
= \int_{0}^{z} \frac{(\lambda - 1)((\mu - y)/z)f(y) dy}{C1} + \int_{z}^{(z + (\lambda - 1)\mu)/\lambda} [((z - \mu) + \lambda(\mu - y))/z] f(y) dy
$$

$$
= \int_{0}^{z} \frac{(\lambda - 1)((\mu - y)/z)f(y) dy}{C2}
$$

In this case, all individuals of the poor group will experience an increase in their poverty depth (component $C1$). In addition, another part of the non poor group will joint the poor group (component $C2$). The absolute depth of an individual within this group equals to $(\lambda - 1)(\mu - y)$ corrected by its initial surplus $-(y - z)$. In the case where $z > \mu$, the impact on poverty will take the following form:
\[\Delta P(z; \alpha = 1) = \int_0^\mu (\lambda - 1)(\mu - y)/z \ f(y) \, dy \]

\[- \int_{\mu}^{(z + (\lambda - 1)\mu)/\lambda} [(\lambda - 1)(y - \mu)]/z) \ f(y) \, dy \]

\[- \int_{(z + (\lambda - 1)\mu)/\lambda}^{z} (1 - y/z) \ f(y) \, dy \]

\[\text{C1} \]

\[\text{C2} \]

\[\text{C3} \]

Here we find three main components. The first concerns the group with income lower than the average and where their poverty depth will increase. The second concerns the group that have an income higher than of the average income, but the improvement in their incomes, due to the distributive change, is not sufficient to enable them to escape from poverty. The third component concerns those that escape from poverty with this distributive change.

For the increase in inequality with the bi-polarization scheme and when \(z < \mu \), the impact on poverty severity is as follow:

\[\Delta P(z; \alpha = 2) = \frac{1}{z^2} \int_0^\mu [(z - (\lambda y - (\lambda - 1)\mu)^2 - (z - y)^2) \ f(y) \, dy \]

\[+ \int_{(z + (\lambda - 1)\mu)/\lambda}^{(z + (\lambda - 1)\mu)/\lambda} [1 - (y - z)^2] \ f(y) \, dy \]

\[\text{C1} \]

\[\text{C2} \]

\[\text{C3} \]

When \(z > \mu \), the impact on poverty severity is as follow:

\[\Delta P(z; \alpha = 2) = \frac{1}{z^2} \int_0^\mu [(z - (\lambda y - (\lambda - 1)\mu)^2 - (z - y)^2) \ f(y) \, dy \]

\[+ \frac{1}{z^2} \int_{\mu}^{(z + (\lambda - 1)\mu)/\lambda} [(z - (\lambda y - (\lambda - 1)\mu)^2 - (z - y)^2) \ f(y) \, dy \]

\[- \int_{(z + (\lambda - 1)\mu)/\lambda}^{z} [1 - (y - z)^2] \ f(y) \, dy \]

\[\text{C1} \]

\[\text{C2} \]

\[\text{C3} \]
3 Application

We begin by illustrating the expected impacts of distributive changes on poverty by using two fictive distributions. We denote the first by A and the second by B. These distributions were constructed in order to follow the Log-Normal form with the size of 10000 observations for each. Means of A and B are the same and equal to one. The standard deviation of A is equals to one and that of B to two, and this, to generate more inequality in the second distribution. In Figure 1 we show the link between the poverty gap and the economic growth (proportion of change in average income). In this first application, we simply use the counterfactual approach. For instance, to estimate the expected poverty gap with growth of 20%, we use the income of the initial distribution multiplied by 1.2. In Figure 2 we show the proportion of change in poverty gap according to the economic growth. It is evident that the decrease in poverty is amplified when inequality is low, which is the case for the distribution A. As reported above,

Figure 1: Poverty gap and economic growth

![Figure 1: Poverty gap and economic growth](image1)

Figure 2: Proportional change in poverty according to growth

![Figure 2: Proportional change in poverty](image2)

with marginal changes in average income, one can use the analytical approach (poverty semi-elasticity with respect to growth) instead of the counterfactual approach, used in Figures 1 and 2. However, what is the level of the error when growth began non marginal? To show this aspect in clear, we present in Figure 3

13For more details, see the Appendix 2.
the estimated proportional change in poverty gap with the counterfactual and the analytical approaches for distribution A. Starting from this figure, one can remark that, for small levels of growth, the two approaches will practically give similar results. However, when growth is high (20% for instance), the estimates diverge. As shown also in Figure 4 with an expected growth of 20%, the error is approximately 20%. In other words, if one uses the Kakwani (1993) approach to estimate the impact of targeted economic growth by the MDG goals, the error of estimation will be high and the counterfactual approach with the non marginal changes will give more accurate results. Now, we focus on the change in poverty implied by an expected increase in inequality. As shown in Figures 5 and 6 the analytical approach tends to underestimate the expected increase in poverty. For instance, when the increase in inequality is 20% the underestimation is about 7%, and this, using our fictive distribution A. At this stage, let us focussing on the implication of using implicitly the parameterized models. To this end, we use the national household surveys of Nigeria 2004 and that of Burkina Faso 1994. Precisely, for each of these two samples we assume that the per capita expenditures follow the Log Normal distribution. The first exploration consists in checking visually the pertinence of this assumption, and this, by plotting the corrected boundary kernel density distribution and the predicted density with the Log Normal model.

As shown in Figure 7 the distribution of per capita expenditures in Nigeria for the year of 2004 is very close to that of the Log Normal. Thus, one can expect
that the estimated impact of growth or redistribution on poverty will contain less errors with the parameterized approach. However, this conclusion is not true in all cases. For instance, in Figure 8, with the Burkina’s 1994 distribution, the predicted distribution with the Log-Normal model is far from the true distribution, and this, in different parts of the distribution.

Before estimating the impact of growth or redistribution on poverty, let us focusing simply on the estimation of the FGT index. In addition to the counting approach using the discrete data of the sample, one can use the parameterized approach, as well as, the numerical approach. In Figure 9 we estimate the headcount according to the poverty line and this by using different approaches. The first remark is about the perfect concordance of the true estimates with the numerical approach. As expected, the parameterized model is less flexible and fails to reproduce the true distribution, and thus, the accurate results. With the prevailed official poverty line in 1994 (41099 F CFA), when we estimate the headcount with the parameterized approach, the generated error is about 20%. Let us continue using the Burkina Faso survey to estimate the impact of a potential income growth on poverty. To this end, we use the different presented methods in order to show the performs of each. Precisely, these methods are:

A **Counterfactual approach:** We estimate simply the change in poverty gap after multiplying the vector income -per capita expenditures- by \((1 + g)\),
Figure 7: Estimated density function of per capita expenditures
Nigeria (2004)

Figure 8: Estimated density function of per capita expenditures
Burkina Faso (1994)

Figure 9: Estimated headcount with the parameterized and discrete approaches: *Burkina Faso (1994)*

Figure 10: The estimated error in the proportional change in poverty with the parameterized approach
where g denotes the growth.

B **Analytical approach:** As indicated in section 2.2 with the analytical approach, the impact of growth on poverty gap equals to $[P(z; \alpha = 1) - P(z; \alpha = 0)]g$. We recall here that, for the growth component, this approach was proposed by Kakwani (1993).

C **Parameterized approach:** Usually, in empirical applications, the used method with the parameterized approach implies an impact equals to:

$$
\Delta P(z; \alpha = 1) = -\left(\mu_p/z\right)P(z; \alpha = 0) \tag{23}
$$

where μ_p denotes the average income of poor group. The headcount ($P(z; \alpha = 0)$) will be estimated based of the Bourguignon (2002) parameterized approach with the assumption of Log-normal distribution of incomes.

D **Numerical approach:** First, we estimate the third order corrected bound- ary Gaussian Kernel estimator. Then, we integrate numerically the impact defined by equation (15).

The results of estimations with the four approaches are reported in Figure 11. Based on this, the main conclusions that one can draw are the followings:

- The numerical approach gives more precise results similar to those found with the counterfactual -simulated- approach.
- The analytical approach gives better results when the distributive changes are small. One must be prudent for the application of this approach when the changes are not marginal.
- Based on what was proposed by Bourguignon (2002), we fail to estimate the accurate changes in poverty when growth begun to be non marginal. Obviously, this is explained by the limitation in specification of the model of income distribution.

At this stage, let us exploring the impact of change in inequality on poverty. To this end, we continue to use the Burkina’s data and we assume that the increase in inequality is implied by the increase in bi-polarization, which is defined already by equation (6). As shown in Figure 12 while the analytical approach contains a non
neglected error with the non marginal changes, the numerical approach performs well and gives more accurate results.

Note that for the estimation of the results with the different approaches, a set of Stata modules are prepared for users. For more details, see the [Appendix 3](#).

4 Conclusion and recommendations

During the last decades, there was an increasing preoccupation within the international community with the aim to improve the social wellbeing. Even if the targeted objectives of the MDG may not be attained according to their deadline, this international commitment is very beneficial to create the required synergy. This synergy, in its turn, constitutes the main factor that pushes national governments to do better for the improvement of wellbeing of the most deprived population groups.

To assess the impact of some potential governmental programs on poverty, we need to use the most updated and accurate methods. In this paper, we recall the methods that were intensively used in empirical works. Obviously, more precise estimations are necessary to have a clear judgment about the social efficiency of these different potential reforms, or even, to assess their impact on poverty for the different population groups.
Among the main objectives of this paper was to show the limitations of some methods used to estimate the impact of distributive changes on poverty, and where these changes are controlled by growth or redistribution -inequality-. Also, we propose a new approach based on the numerical estimation of the impact. In summary, the main conclusions found in this paper are:

- With the non marginal distributive changes, the use of the analytical approach will induce a non neglected error in our estimates. This can be explained by the non linear form that links between the poverty indices and the components, which control the change in distribution, like growth.

- The parameterized approach, proposed by Bourguignon (2002), will in general generates a non neglected error term in the estimated impact. This is especially the case when the predicted the distribution is different from the observed one.

- The numerical approach, proposed in this paper, gives accurate results for the two forms of change (marginal and non marginal). This numerical approach is promising and can be developed in order to be extended to the study the other topics of the distributive analysis.
References

Appendix 1 The corrected boundary Gaussian Kernel estimator

The Gaussian kernel estimator of a density function $f(x)$ is defined by:

$$
\hat{f}(x) = \frac{\sum_{i} w_i K_i(x)}{\sum_{i=1}^{n} w_i} \quad \text{(A.1)}
$$

where

$$
K_i(x) = \frac{1}{h \sqrt{2\pi}} \exp\left(-0.5 \lambda_i(x)^2\right) \quad \text{and} \quad \lambda_i(x) = \frac{x - x_i}{h} \quad \text{(A.2)}
$$

where h is a bandwidth that acts as a “smoothing” parameter. A problem occurs with kernel estimation when a variable of interest is bounded. It may be for instance that consumption is bounded between two bounds, a minimum and a maximum, and that we wish to estimate its density “close” to these two bounds. If the true value of the density at these two bounds is positive, usual kernel estimation of the density close to these two bounds will be biased. One way to alleviate these problems is to use a smooth “corrected” Kernel estimator, following a paper by Bearse and Rilstone (2007) (See also Jones (1993)). A boundary-corrected Kernel density estimator can then be written as:

$$
\hat{f}(x) = \frac{\sum_{i} w_i K_i^*(x) K_i(x)}{\sum_{i=1}^{n} w_i} \quad \text{(A.3)}
$$

The scalar $K_i^*(x)$ is defined as:

$$
K_i^*(x) = \psi(x) P(\lambda_i(x)) \quad \text{(A.4)}
$$

$$
P(\lambda) = \begin{pmatrix} 1 & \lambda & \frac{\lambda^2}{2!} & \cdots & \frac{\lambda^{s-1}}{(s-1)!} \end{pmatrix} \quad \text{(A.5)}
$$

$$
\psi(x) = M^{-1} l_s^t = \left(\int_{A}^{B} K(\lambda) P(\lambda) P(\lambda)^t d\lambda\right)^{-1} l_s \quad \text{(A.6)}
$$
\[A = \frac{x - \max}{h}, \quad B = \frac{x - \min}{h}, \quad l'_{s} = (1, 0, 0 \cdots, 0) \]

\(\min\) is the minimum bound, and \(\max\) is the maximum one. This correction will remove the boundary bias to order \(h^s\).

Appendix 2 The Log-Normal distribution of income

If \(x \sim N(\mu_x, \sigma_x^2)\), the \(y = e^x \sim LN(\mu_y, \sigma_y^2)\), and where:

- \(\mu_y = e^{\mu_x + 0.5\sigma_x^2}\)
- \(\sigma_y^2 = e^{2\mu_x + \sigma_x^2}(e^{\sigma_x^2} - 1)\)

Conversely, \(\mu_x\) and \(\sigma_x^2\) can be found from \(\mu_y\) and \(\sigma_y^2\) as follows:

- \(\mu_x = 2ln(\mu_y) - 0.5ln(\sigma_y^2 + \mu_y^2)\)
- \(\sigma_x^2 = -2ln(\mu_y) + ln(\sigma_y^2 + \mu_y^2)\)

The Log-Normal distribution has the probability density function:

\[
 f(x, \mu_y, \sigma_y) = \frac{1}{x\sigma_y\sqrt{2\pi}}e^{\frac{-(\ln(x) - \mu_y)^2}{2\sigma_y^2}}
\] \(\text{(B.1)}\)

The headcount poverty or the cumulative distribution function is given by:

\[
 H = \frac{1}{2} + \frac{1}{2}erf\left(\frac{\ln(z - \mu_y)}{\sigma_y\sqrt{2}}\right)
\] \(\text{(B.2)}\)
Appendix 3 Estimation of elasticity and semi-elasticity with Stata

Two Stata modules (efgtgro and efgtine) are already programmed and can be installed from the net. Mainly these two modules enable the estimation of elasticity and semi-elasticity of poverty with respect to growth or inequality, and this, with the different approaches presented in this paper. For instance, to produce the results of Figure from the Stata window commands, we have to type the command line: db efgtgro, and then, we have to indicate the variables and to select the options, as shown in Figure. After clicking on the button OK, the graph of Figure is automatically generated (see the Figure).

Figure: The dialog box to estimate the elasticity of poverty with respect to growth

Figure is automatically generated (see the Figure).

14 To install these two Stata modules, from the Stata command, type the command: net from http://dasp.ecn.ulaval.ca/efgtgi. Further, these two modules will be integrated of DASP 2.2 (see also the web page in DASP at http://dasp.ecn.ulaval.ca).

15 Note that, these two modules contain many other options. The user can consult the help for more details on how to use these Stata modules.
The semi-elasticity of FGT index with respect to growth: (alpha=1)