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Abstract	–	Targeted	anti‐poverty	programs	are	preferred	to	universal	interventions	because	
they	would	allow	to	spend	more	resources	on	the	poor.	However,	they	are	often	criticized	
because	of	their	inefficiency	in	including	the	real	poor	and	excluding	the	non‐poor.	In	this	
paper	we	develop	a	new	numerical	algorithm	for	optimal	poverty	group	targeting	when	the	
total	budget	is	fixed	and	information	on	individual	welfare	is	unknown,	as	is	the	case	for	most	
developing	countries.	Contrarily	to	other	similar	algorithms	found	in	the	literature,	what	we	
propose	is	applicable	to	all	additive	poverty	indices.	Tested	on	household	data	from	Burkina	
Faso,	the	new	approach	gives	a	better	targeting	performance	than	the	popular	proxy‐means	
test	(PMT)	approach	irrespective	of	the	poverty	indicator	is	used,	and	replicates	quite	closely	
the	results	obtained	through	a	grid	approach	(our	benchmark).	Also,	finer	the	partitions	of	
the	group	per	capita	transfer,	more	efficient	the	targeting	algorithm.	Finally,	the	proposed	
algorithm	 converges	 to	 the	 global	 optimum	 also	 in	 the	 case	 of	 headcount	 poverty	 index,	
where	there	are	multiple	local	optima.	
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1. INTRODUCTION	

Anti‐poverty	 interventions	 can	 be	 universally	 distributed	 across	 the	 population	 or	
targeted	to	specific	groups	of	individuals.	While	universal	programs	reach	all	the	poor	but	are	
often	unfeasible	in	terms	of	budgetary	grounds,	targeted	interventions	may	take	longer	and	
be	more	 expensive	 to	 implement,	 and	 administratively	 difficult	 to	manage.	 In	 developing	
countries,	 targeting	 is	 generally	 based	 on	 proxy‐means	 testing,	 geographical	 (at	 regional,	
provincial,	or	a	 lower	 level	such	as	communes	or	villages)	or	demographic	 (e.g.,	young	or	
elderly)	categorical	eligibility,	self‐selection	or	a	mix	of	these	approaches	(Coady,	Grosh	and	
Hoddinott,	2004).	All	 targeted	methods	generate	 the	 so‐called	 “two	 targeting	errors”	 (i.e.,	
inclusion	of	non‐poor	and	exclusion	of	poor)	(Cornia	and	Stewart,	1995).	Also	sophisticated	
econometric‐based	 proxy‐means	 tests	 (PMT)	 are	 usually	 prone	 to	 exclude	 many	 poor	
individuals	(Brown	et	al.,	2018).	Targeted	schemes	may	become	even	more	inefficient	when	
combined	with	high	taxes	burdening	on	the	poor	(Higgins	and	Lustig,	2016).	Over	the	last	20	
years,	social	protection	schemes	have	progressed	substantially,	and	one	or	more	programs	
are	 now	 available	 in	 most	 of	 developing	 countries	 (Margitic	 and	 Ravallion,	 2019).	
Nonetheless,	 the	 literature	 unanimously	 agrees	 that	 no	 method	 clearly	 dominates	 (e.g.,	
Coady,	Grosh	and	Hoddinott,	2004;	Devereux	et	al.,	2017;	Hanna	and	Olken,	2018),	and	its	
effectiveness	in	terms	of	poverty	reduction	may	depend	on	various	issues	such	as	the	depth	
of	poverty,	the	inequality	level	within	the	poor,	the	poverty	indicator	which	is	used,	the	level	
of	the	poverty	threshold,	the	local	context,	and	so	on.	For	example,	higher	the	percentiles	to	
which	the	poverty	line	corresponds,	lower	the	need	of	targeting	as	the	leakage	of	non‐poor	
decreases.		

Although	any	improved	targeting	approaches	should	aim	at	reducing	one	or	both	of	the	
errors	mentioned	above,	the	mechanisms	proposed	so	far	in	the	literature	have	not	been	set	
in	a	way	that,	subject	to	a	fixed	total	budget,	poverty	reduction	per	dollar	spent	is	maximized,	
irrespective	of	the	adopted	poverty	indicator.	In	order	to	fill	this	gap,	in	this	paper	we	develop	
a	 new	 poverty	 group	 targeting	 algorithm	 when	 budget	 is	 fixed	 and	 information	 is	 on	
individual	welfare	is	partially	or	fully	unknown	to	the	policy	maker,	as	is	especially	the	case	
in	developing	countries.	Such	information	is	generally	available	only	for	sampled	households.	
At	the	population	level,	the	policy‐maker	disposes	of	information	on	groups	of	individuals,	
such	as	regions	or	age	groups.	Under	such	circumstances,	the	goal	of	the	policy	maker	is	to	
find	 the	 optimal	 group	 transfers	 that	 reduces	 the	most	 the	 aggregate	 poverty.	 Tested	 on	
household	data	from	Burkina	Faso,	and	estimated	with	a	newly	developed	Stata	package,	we	
found	that	our	proposed	algorithm	is	more	efficient	than	a	PMT‐based	targeting	approach,	
irrespective	of	the	poverty	indicator.	

As	usual	in	optimization	exercises,	the	objective	function	must	be	strictly	quasi‐convex	in	
its	arguments	of	interest,	which	means	that	the	reduction	in	poverty	is	larger	for	increases	in	
incomes	of	poorer	individuals	(as	postulated	by	the	transfer	axiom).	Unfortunately,	not	all	
popular	poverty	 indices,	 such	as	 the	headcount	or	poverty	gap	 rates,	obey	 this	 condition.	
While	 Kanbur	 (1987)	 focused	 on	 the	 theoretical	 rules	 of	 optimization,	 Ravallion	 &	 Chao	
(1989)	 and	 Elbers,	 Fujii,	 Lanjouw,	 Özler,	 &	 Yin	 (2007)	 have	 also	 proposed	 numerical	
algorithms	that	maximize	the	reduction	in	the	squared	poverty	gap	index	by	group	transfers,	
subject	to	a	fixed	budget	of	transfers.	Based	on	the	theoretical	findings	proposed	in	Kanbur	
(1987),	these	numerical	approaches	show	that,	to	minimize	the	squared	poverty	gap,	lump‐
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sum	transfers	should	target	the	population	group	with	the	highest	poverty	gap	until	when	
this	group	reaches	 the	next	poorest	one,	and	so	on,	until	 the	available	budget	 is	depleted.	
Glewwe	(1992)	proposed	a	generalization	of	the	Ravallion	and	Chao’s	approach	to	identify	
poor	 people	 through	 continuous	 variables	 (rather	 than	 group/binary	 variables).1	
Unfortunately,	these	theoretical	and	empirical	works	only	offer	an	optimal	targeting	solution	
for	 the	 case	 of	 the	 squared	 poverty	 gap	 index,	 which	 satisfies	 the	 set	 of	 optimization	
conditions.	

To	 overcome	 these	 limitations	 in	 the	 existing	 literature,	 this	 paper	 develops	 a	 new	
numerical	algorithm	for	antipoverty	targeting.	Our	approach	helps	to	find	the	optimal	group	
transfers	that	allow	the	largest	possible	reduction	in	any	additive	poverty	indices,	 like	the	
FGT	 class	 of	 poverty	 indices.	 Finer	 group	 definitions	 (e.g.,	 smaller	 groups	 based	 on	 the	
combination	of	identifiable	socio‐economic	characteristics	or	lower	geographic	units	such	as	
those	defined	through	poverty	mapping	methods)	would	allow	larger	poverty	reduction.	The	
rest	of	this	paper	is	organized	as	follows.	In	section	2,	the	group	poverty	reduction	curves	are	
introduced;	in	section	3,	we	introduce	the	new	algorithm	and	present	the	cases	of	single	and	
multiple	group	targeting,	we	discuss	the	relation	between	the	number	of	partitions	and	the	
optimization	results,	and	we	conclude	by	validating	empirically	the	algorithm.	In	section	4,	
we	briefly	present	various	econometric‐based	targeting	approaches	(or,	proxy‐means	test),	
and	 section	 5	 compares	 the	 poverty	 targeting	 performance	 obtained	 with	 the	 proposed	
algorithm	with	 respect	 to	 the	 results	 estimated	with	 the	 PMT‐based	 approach.	 Section	 6	
draws	some	concluding	remarks.		

		

2. GROUP	POVERTY	REDUCTION	CURVES		

As	 indicated	 earlier,	 previously	 developed	 algorithms	 for	 optimal	 targeting	 of	 population	
groups	with	 a	 fixed	 budget	 have	 focused	 on	 a	 subclass	 of	 poverty	 indices	 for	 which	 the	
analytical	solution	is	feasible,	such	as	the	squared	poverty	gap	index	(Ravallion	&	Chao,	1989;	
Elbers,	 Fujii,	 Lanjouw,	Özler,	&	Yin,	2007).	When	an	analytical	 approach	 is	used	as	 in	 the	
previous	works,	the	objective	function	to	be	minimized	must	be	strictly	quasi‐convex.	Our	
work	aims	to	extend	the	existing	literature	by	suggesting	a	numerical	approach	that	combines	
the	numerical	method	of	optimization	of	the	objective	function	and	some	basic	theoretical	
rules	 which	 can	 help	 to	 simplify	 the	 computation.	 More	 importantly,	 the	 algorithm	 we	
propose	here	is	assumed	to	be	valid	for	all	classes	of	additive	poverty	indices,	including	the	
headcount	and	the	poverty	gap.		

The	poverty	reduction	component	

Assume	 that	a	 lump‐sum	transfer	 is	 attributed	only	 to	 the	population	group	 .	Per	capita	
lump‐sum	 transfer	 is	 denoted	 by	 	 and,	 because	 of	 the	 imperfect	 information	 on	 the	
individual	 welfare,	 is	 the	 same	 for	 all	 individuals	 belonging	 to	 .	 The	 change	 in	 the	
contribution	to	total	poverty	by	individual	 	living	in	the	targeted	group	 	and	having	income	

, 	is	denoted	by	 , .	When	the	FGT	poverty	class	is	used,	for	 0	(which	estimates	the	
headcount	poverty)	we	have	that:	

                                                            
1 In addition to the squared poverty gap, any other poverty measure that is concave with respect to the poverty gap (like the Watts 
index) can be maximized with the analytical approach. 
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, ; 0)	= 	I , 	I , 	 	 	 	 								(1)	

where	 	is	the	total	population	(thus	1⁄ 	represents	the	population	weight	represented	by	
individual	 ),	 	is	the	population	share	of	the	targeted	group	 	and	the	indicator	I . 	is	equal	
to	one	 if	 the	condition	 is	 satisfied	and	zero	otherwise.	Note	 that,	 since	we	 target	 just	one	
group,	the	per‐capita	transfer	becomes	 ⁄ . 2	As	from	(1),	in	order	to	have	a	reduction	in	
the	headcount	poverty,	two	conditions	are	necessary:	(i)	individual	 	must	be	initially	poor	
(i.e.,	her	initial	income	 , 	is	below	the	poverty	line	 );	(ii)	the	transferred	amount	should	be	
large	enough	to	bring	her	income	at	least	up	to	the	poverty	line.	Similarly,	for	the	poverty	gap	
( 1),	one	can	write:	

, ; 1)	=	 	 I , 	min	
	
, 	 , 	 	 	 	 								(2)	

For	the	squared	poverty	gap,	we	have	that:	

, 	 ; 2)	= 	 	I , 	 , 	 , 	 	
	 , 	 									(3)	

Hence,	for	the	case	of	additive	poverty	indices,	 it	 is	easy	to	define	the	reduction	in	the	
population	poverty	when	targeting	group	 	as	follows3:	

	 ; ∑ , ; 	 	 	 	 	 	 	 								(4)	

The	function	 ; 		is	called	the	Group	Targeting	Poverty	Reduction	(GTPR).4		

Figure	1:	The	Group	Targeting	Poverty	Reduction	(absolute)		

	
Source:	authors’	elaboration	based	on	the	1998	Enquête	Prioritaire	(EP2)	from	Burkina	Faso.	

                                                            
2 Let assume that n=10, that we have two groups whose φ is 0.4 and 0.6 respectively, and that the total budget available for transfers is 
1,000.  is then 100. If we target only the first group, then the per-capita transfer rises to 250 (=100/0.4) or to 166.66 (=100/0.6) if 
only group 2 is targeted. 
3 For simplicity, we omit the common denominator 1/  for the class of the FGT poverty indices.   
4 The Stata module cgtpr.ado – downloadable from http://dasp.ecn.ulaval.ca/stata_adds/ctgpr.html - can be used to draw the GTPR 
curves. 
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Figure	 1	 illustrates	 the	 (absolute)	 reduction	 in	 the	 poverty	 gap	with	 1998	 Burkina	 Faso	
household	data	for	various	per	capita	transfers	ranging	from	0	to	1000.	In	this	example,	the	
largest	reduction	in	poverty	is	obtained	by	targeting	subsistence	farmers.	The	bottom	curves	
show	the	case	of	relatively	less	poor	groups	for	which	the	transfer,	above	a	certain	amount,	
does	not	affect	poverty	(as	 for	“other	 type	of	earners”)	or	 for	which	the	marginal	poverty	
reduction	flattens.	

	

3. OPTIMAL	TRANSFERS	

3.1 CASE	1:	SINGLE	GROUP	TARGETING	

Proposal	1:	

For	 a	 given	 per	 capita	 transfer	 	and	 when	 only	 one	 group	 is	 targeted,	 the	 optimal	
targeting	is	that	which	prioritises	the	group	with	the	highest	GTPR	curve	at	 .	

For	instance,	based	on	the	results	of	Figure	1,	the	optimal	targeting	prioritizes	the	subsistence	
farmer	group.		

3.2 CASE	2:	MULTIPLE	GROUP	TARGETING	

Now,	 assume	 that	 the	 policy‐maker	 aims	 at	 targeting	more	 than	 one	 group	 by	 allocating	
different	levels	of	lump‐sum	transfers.	Hence,	the	objective	is	to	find	the	optimal	transfers	
that	reduce	the	most	aggregate	poverty,	under	the	transfer	constraint	 ∑ 	as	well	as	
the	following	inequality	0 ι 		∀	 ,	where	ι 	denotes	the	maximum	poverty	gap	within	
group	 .	 Formally,	 if	 we	 denote	 the	 reduction	 in	 aggregate	 poverty	 by		 	 ;
	∑ 	 ; ,	the	optimization	problem	can	be	written	as	follows:	

max
:	 	

	 ; 				 . .				 ∑ 	and		0 ι 				∀ 		 	 								(5)	

where	 the	 vector	 , , ⋯ , .	 Based	 on	 the	 analytical	 approach,	 the	 FOCs	 of	
maximization	are:	

;
0			∀ .	 	 	 	 	 	 	 	 								(6)	

The	SOCs	of	optimization	requires	 that:	
;

0.	However,	 for	 the	class	of	 the	FGT	

indices,	this	condition	is	only	satisfied	with	 1.		

This	result	corroborates	the	findings	reported	in	Kanbur	(1987)	on	the	minimization	of	
aggregate	poverty	based	on	the	FGT	class	index,	when	(α>1).	As	he	reports,	to	minimize	the	
FGT	poverty	class	for	α>1,	the	group	showing	the	highest	FGT(α−1)	should	be	targeted.	For	
instance,	to	minimize	the	squared	poverty	gap,	groups	should	be	ranked	by	their	poverty	gap	
(FGT	with	α=1)	and	 lump‐sum	transfers	made	until	 the	poverty	gap	of	 the	poorest	group	
becomes	equal	to	that	in	the	next	poorest	group,	and	so	on,	up	to	the	exhaustion	of	the	budget.		

Unfortunately,	this	rule	proposed	by	Kanbur	is	only	valid	for	classes	with	α>1,	and	it	fails	
to	cover	the	other	popular	indices	like	the	headcount	or	the	poverty	gap.		Thus,	the	simple	
algebraically	 optimization	 rules	 are	 not	 valid	 for	 the	 cases	 of	 α=0,	 1.	 Indeed,	 poverty	
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reduction	is	not	always	a	decreasing	function	of	the	marginal	increase	of	transfers.	This	is	
also	explained	by	the	different	 levels	of	the	density	of	the	population	at	different	 levels	of	
income.			

The	 algorithm	 proposed	 here	 tries	 to	 overcome	 this	 limitation.	 Also,	 it	 takes	 into	
account	 the	 importance	 of	 the	 group	population	 sizes	 and	 considers	 the	 cases	where	 the	
optimization	may	indicate	to	prioritize	the	groups	with	small	population	sizes,	even	if	they	
are	less	poor.	For	instance,	assume	that	we	have	three	population	groups.	Also,	the	poverty	
line	is	equal	to	10	and	all	poor	individuals	in	a	given	group	have	the	same	income,	as	shown	
in	Table	1	below.	Assume	that	the	available	per	capita	transfer	is	0.5.		

Table	1:	Optimal	targeting	with	different	groups	
	 Population	

share	
Headcount	
Poverty	

Income
of	the	poor	

Group	A	 0.1	 0.20 8
Group	B	 0.6	 0.30 6
Group	C	 0.3	 0.25 9
Source:	authors’	elaboration	

If	 we	 target	 only	 group	 B,	 each	 individual	 would	 receive	 0.83	 and	 the	 total	 reduction	 in	
poverty	is	nil	even	if	the	headcount	is	the	highest.	If	we	target	only	group	C,	each	individual	
in	this	group	would	receive	1.66,	which	is	more	than	enough	to	allow	all	individuals	in	this	
group	to	escape	poverty.	In	such	a	case,	the	reduction	in	the	population	poverty	is	0.25*0.3	=	
0.075;	also,	assuming	that	the	policy	maker	has	not	perfect	information	on	individual	income,	
the	optimal	individual	transfer	to	group	C	is	1,	so	the	per	capita	cost	is	0.3	(=1*0.3).	At	this	
stage,	the	remaining	0.2	budget	would	be	allocated	to	group	A	(and	not	to	group	B),	because	
its	population	share	is	lower	than	group	B,	and	this	would	enable	all	poor	in	group	A	to	escape	
poverty,	as	their	per	capita	group	transfer	is	2	(=	(0.5	–	0.3)/0.1).	

3.3 THE	DATA‐GRAPH	ALGORITHM	

In	what	follows,	the	three	main	steps	of	the	new	algorithm	are	introduced.	The	discussion	
is	 provided	 for	 the	 first	 sequence	 of	 optimization.	 The	 sequences	 which	 follow	 simply	
replicate	the	same	logic	of	the	first	sequence,	and	stop	when	the	total	budget	is	exhausted.	

Sequence	1	

STEP	I:	Estimate	the	normalized	poverty	reduction		

The	first	stage	starts	by	computing	the	reduction	in	aggregate	poverty	(at	the	population	
level),	 for	 different	 levels	 of	 per	 capita	 transfer.	 This	 is	 similar	 to	 estimate	 the	 function		

	 ; 	for	different	levels	of	 .	For	instance,	if	the	fixed	budget	of	the	per	capita	transfer	
is	 equal	 to	 ̅	 for	 each	 group,	 the	 reduction	 in	 aggregate	 poverty	 can	 be	 estimated	 for	 the	

transfers:	
	
,	

,
,

,
⋯ ,

,
.	 In	 such	 an	 illustrative	 example,	 we	 used	 1,000	

partitions.	In	general,	higher	the	number	of	partitions,	more	accurate	the	results.	In	general,	
the	number	of	partitions	 can	affect	 the	degree	of	precision	 in	 the	estimations,	but	 after	a	
certain	 threshold	 (of	 partitions)	 the	 marginal	 gain	 of	 partitioning	 becomes	 negligible.	
Specifically,	 a	 higher	number	of	 partitions	 is	 suggested	 for	 indices	 such	 as	 the	headcount	
where	 the	 relationship	between	 income	and	 the	poverty	 reduction	 index	 is	 strongly	non‐
linear.	Whereas,	for	indices	whose	relationship	with	income	is	linear	(such	as	the	poverty	gap	
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and	the	severity	of	poverty),	the	impact	of	having	a	finer	partition	becomes	sooner	negligible.	
After	that,	we	normalize	the	estimated	 	 ; )	by	the	corresponding	per	capita	transfer	
( ).	We	denote	 the	 ratio	 between	 the	 reduction	 in	 aggregate	 poverty	 and	 the	per	 capita	
transfer	for	the	group	 	by:		

	 ; )	=		 	 ; )	/	 .	 	 	 	 	 	 	 								(7)	

Note	 that,	 by	 covering	 the	whole	 potential	 levels	 of	 ∈ 0, 	 	∀ ,	 the	 algorithm	 seeks	 a	
global	optimum	of	the	poverty	reduction.	

STEP	II:		Rank	the	normalized	aggregate	poverty	reduction	

For	 each	 group,	 we	 rank	 the	 	 results	 in	 a	 descending	 order.	 Note	 that,	 for	 our	
maximization	problem,	 such	a	 ranking	according	 to	 	enables	 to	converge	quickly	 to	 the	
global	optimum.	Also,	it	circumvents	the	quasi‐convexity	condition.	This	is	because,	with	the	
highest	 	and	its	corresponding	transfer	 ,	we	cannot	reach	a	bigger	poverty	reduction	with	
lower	transfers	for	group	 	or	by	sharing	such	amount	across	other	groups.	This	result	will	
be	discussed	in	more	details	below.	After	this	step,	we	have	the	basic	data‐graph	information,	
which	 can	 be	 used	 to	 identify	 the	 optimal	 attribution	 of	 transfers	 for	 the	 first	 sequence.	
Basically,	the	results	must	be	organized	as	in	Table	2	below:		

Table	2:	The	structure	of	the	data‐graph	table	
	 Group	1	 Group	2	 Group	G	

	Position	( )	 	 	 	 	 	 	

1	 	 	 	 	 	

2	 	 	 	 	 	

.	 	 	 	 	 	

.	 	 	 	 	 	

	 	 	 	 	 	 	

1000	 	 	 	 	 	 	

Source:	authors’	elaboration	

In	general,	the	notation	on	the	combination	( . 	 ;	 . 	refers	to	the	normalized	
poverty	reduction	and	the	corresponding	per	capita	transfer	for	the	group	 	at	position	 	in	
sequence	 ,	in	the	table	above	(s=1	at	the	first	iteration).		

STEP	III:		seek	the	optimal	transfers	

Starting	from	the	first	position	of	table	2,	we	seek	the	group	with	the	highest	 	(e.g.,	group	 ),	
such	that	the	level	of	transfer	to	that	group	is	defined	as:			

∗ 1 max	 , 1 | , , 	 ∀ , ∈ 	 	 	 	 (8)	

Then,	we	 attribute	 the	 corresponding	 transfer	 to	 that	 group	 .	Obviously,	 the	 transferred	
amount	will	implicitly	satisfy	the	different	constraints	in	(5).	

STEP	IV:		update	the	data		

Next,	 we	 need	 to	 update	 the	 income	 of	 individual	 	 belonging	 to	 group	 	 by	 adding	 the	

attributed	 transfer	 ∗ 	 (i.e.	 	 , 	 	 , 	

∗ ,

	
).	 Then,	 we	 proceed	 by	 updating	 the	
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remaining	budget	 ̅ ̅ 1 ∗ ,	where	 	 refers	 to	 the	sequence	of	computation,	
which	it	is	equal	to	one	for	the	first	sequence.	

After	these	updates,	we	move	to	the	next	sequence	and	we	repeat	the	four	steps	above,	until	
the	total	budget	is	depleted.		

Proposal	2:	

The	attribution	of	 transfers	based	on	 the	data‐graph	algorithm	will	 converge	 to	 the	global	
optimum	of	poverty	reduction.		

Proof	

For	 each	 sequence	 s	 of	 transfer	 allocation	 to	 the	 group	 of	 interest	 g,	 the	 highest	 poverty	
reduction	per	dollar	spent	 is	reached	 	∀ .	Thus,	the	sequential	attribution	will	
converge	to	the	optimal	poverty	reduction.	Formally,	at	each	sequence,	based	on	the	data‐graph	
sequence,	it	is	easy	to	prove	the	following	inequality:	

If		 ∗; , ; 	∀ , 	and	 ∗; , ; 		∀ , ;	 	 (9)	
	
such	that:	
	
∗

, , 		
	
then:	

∗; 	 	 	 	 , ; 	 , ; 	 	 	 	 	 	 (10)	
	

The	same	inequality	rule	can	be	applied	for	the	case	of	more	than	two	groups.	In	other	terms,	at	
sequence	 ,	by	attributing	the	group	per	capita	amount	 ∗ 	to	group	 ,	any	other	partition	 	or	
	of	this	amount	or	lower	across	the	other	groups	will	generate	a	smaller	reduction	in	poverty	
per	dollar	spent.	

The	following	example	shows	the	algorithm	clearly.	For	the	sake	of	simplicity,	assume	the	
case	 of	 just	 two	 population	 groups	 (1,	 2)	 with	 population	 shares	 of	 75%	 and	 of	 25%	
respectively	(but	it	can	be	easily	shown	that	the	inequality	above	also	holds	with	three	or	
more	groups).	Also,	assume	that	the	total	fixed	per	capita	transfer	is	50$,	and	that	step	II	gives	
the	following	table:	

	
Sequence	1	
	
Table	3:	Data	graph	in	sequence	1.		

	 Group	1	 Group	2
Position	( )	 	 	

1	 0.009	 10	 0.010 20
2	 0.004	 40	 0.009 10
3	 0.003	 20	 0.008 40
4	 0.0025	 30	 0.007 30
5	 0.002	 50	 0.006 50

Source:	authors’	elaboration	
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According	to	the	results	obtained	in	Table	3,	we	attribute	a	first	amount	of	transfer	of	20	to	
group	2.	We	generate	 a	new	per	 capita	vector	 incomes,	where	 the	 incomes	of	 the	 second	
group	increase	by	20/0.25	=	80.	The	remaining	population	per	capita	transfer	is	30.		

Sequence	2	

Table	4:	Data	graph	in	sequence	2.		
	 Group	1	 Group	2

Position	( )	 	 	 	 	
1	 0.008	 6	 0.090	 24	
2	 0.007	 24	 0.008	 30	
3	 0.006	 30	 0.007	 6	
4	 0.005	 12	 0.006	 12	
5	 0.004	 18	 0.005 18

Source:	authors’	elaboration	

In	sequence	2	(as	illustrated	in	Table	4),	we	attribute	a	second	lump‐sum	of	24	to	group	2.	
We	then	generate	a	new	per	capita	vector	where	the	incomes	of	the	second	group	increase	
by	24/0.25	=	96.	The	remaining	transfer	is	6.		

Sequence	3	
	
Table	5:	Data	graph	in	sequence	3.		

	 Group	1	 Group	2	
Position	( )	 	 	 	 	

1	 0.008	 6.0	 0.005	 3.6	
2	 0.007	 3.6	 0.008	 2.4	
3	 0.006	 4.8	 0.007	 1.2	
4	 0.005	 1.2	 0.006	 4.8	
5	 0.004	 2.4	 0.005	 6.0	

Source:	authors’	elaboration	

According	to	sequence	3	(shown	in	Table	5),	we	attribute	a	transfer	of	6	to	group	1	and	the	
incomes	of	group	1	are	increased	by	6/0.75	=	8.	Since	the	total	budget	is	now	exhausted,	the	
algorithm	stops	at	this	sequence.		

Thus,	the	optimal	per	capita	transfers	are	6$	for	the	first	group	and	44$	for	the	second	group.	
Equivalently,	the	optimal	group‐per	capita	transfers	are	8$	(6/0.75)	for	the	first	group	and	
176$	(44/0.25)	for	the	second	group.	For	simplicity,	in	our	illustrative	example,	the	number	
of	 positions	 in	 each	 sequence	 was	 five.	 Of	 course,	 with	 real	 data,	 it	 is	 better	 to	 use	 a	
significantly	larger	number	of	partitions.			

Among	 its	advantages,	 this	data‐graph	algorithm	optimizes	 the	reduction	 in	poverty	 for	a	
fixed	 budget,	 it	 can	 be	 applied	 to	 any	 additive	 poverty	 index	 and	 it	 considers	 the	 corner	
solution	 for	which	some	groups	can	have	 lower	or	upper	 limits	of	 transfer	 in	 the	optimal	
solution.	 The	 Stata	 *.ado	 file	 “ogtpr”5	 can	 be	 used	 to	 automatically	 estimate	 the	 optimal	
transfers	for	the	reduction	of	any	FGT	indices,	including	the	headcount	and	the	poverty	gap.	
The	computation	generally	takes	few	seconds	using	standard	household	surveys.	

                                                            
5 “ogtpr”	Stata	routine	is	downloadable	from	http://dasp.ecn.ulaval.ca/stata_adds/otgpr.html  
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In	particular,	the	*.ado	file	“ogtpr”	generates	the	following	outputs:	the	optimal	group	and	
population	per	capita	transfers,	the	reduction	in	total	poverty	and	its	statistical	significance,	
the	quality	of	the	targeting	indicator	(by	comparing	the	results	of	our	algorithm	with	respect	
to	 the	 poverty	 reduction	 in	 case	 of	 perfect	 knowledge	 of	 individual	 incomes),	 and	 the	
inclusion	and	exclusion	errors.	As	an	example	of	the	“ogtpr”	routine,	we	use	the	1998	Enquête	
Prioritaires	 (EP	 II)	 from	 Burkina	 Faso.	 With	 seven	 socio‐economic	 groups	 and	 8478	
observations,	the	execution	time	is	less	than	ten	seconds.	Based	on	the	results	shown	in	Table	
6,	given	a	population	per‐capita	budget	of	4,000	FCFA,	the	largest	reduction	in	the	headcount	
index	is	reached	when	crop	farmers	and	inactive	people	are	targeted.	These	groups	show	a	
population	share	substantially	lower	than	the	largest	group	(subsistence	farmers),	but	they	
are	likely	to	be	closer	to	the	poverty	line.	Of	course,	while	this	helps	to	reduce	optimally	the	
number	 of	 people	 living	 in	 poverty	 per	 dollar	 spent,	 such	 a	 targeting	 might	 be	 socially	
undesirable	and	additional	analyses	and	considerations	may	be	needed.	

Table	6:	Optimal	group	targeting	and	poverty	reduction	
FGT	Index Population	

Share	
Optimal	group	
per	capita	
Transfer	

Optimal	
population	
per	capita	
Transfer	

Group	
Wage‐earner	(public)	 0.075 4.14 0.00	 0.00
Wage‐earner	(private)	 0.139 2.90 0.00	 0.00
Artisan	or	trader	 0.155 5.58 0.00	 0.00
Other	type	of	earner			 0.355 0.57 0.00	 0.00
Crop	farmer		 0.492 16.78 22,971.74	 3,854.80
Subsistence	farmer		 0.606 65.36 0.00	 0.00
Inactive		 0.463 4.67 3,107.91	 			145.20

Targeting	performance 	
a) Reduction	with	imperfect	targeting	(in	%):	‐4.152
b) Reduction	with	perfect	targeting	(in	%):	‐28.247
c) Quality	of	the	targeting	indicator	(in	%) (a/b):	14.699

Source:	authors’	elaboration	based	on	the	1998	Enquête	Prioritaire	(EP2)	from	Burkina	Faso.	The	full	
results	are	reported	in	Annex	A 

	

3.4 NUMBER	OF	PARTITIONS	AND	OPTIMIZATION	

Results	 and,	 then,	 poverty	 reduction,	 can	 be	 sensitive	 to	 the	 number	 of	 the	 transfer’s	
partitions.	 Intuitively,	 a	 smaller	 number	 of	 partitions	 reduces	 the	 space	 of	 the	 optimum	
research	and,	 consequently,	 the	 level	of	precision.	Using	 the	same	data	as	 in	 the	previous	
example,	in	Figure	2	we	show	the	relationship	between	the	number	of	partitions	and	the	total	
reduction	in	poverty.	

	
	
	
	
	
	
	
	



 

  
 10 

	
Figure	2:	Headcount	Poverty	reduction	and	number	of	the	transfer’s	partitions	

	
Source:	authors’	elaboration	based	on	the	1998	Enquête	Prioritaire	(EP2)	from	Burkina	Faso.	

From	the	example	above,	with	a	lower	number	partitions	(e.g.,	100),	the	error	with	respect	
to	the	convergence	level	(where	the	reduction	in	poverty	practically	becomes	a	parallel	line	
to	the	x‐axis)	is	less	than	1%.	We	can	observe	that	the	convergence	is	high	starting	with	a	
partition	 of	 1,000.	 Furthermore,	 our	 tests	 show	 that,	 for	 1,	 the	 required	 number	 of	
partitions	 to	 reach	 the	 convergence	 level	 is	 substantially	 lower	 than	with	 the	 headcount	
poverty.	

	

3.5 VALIDATING	THE	ALGORITHM	

How	 can	 we	 numerically	 check	 the	 validity	 of	 the	 new	 algorithm	 and	 the	 related	 Stata	
routine?	As	it	is	well	known,	among	the	easiest	methods	to	find	the	optimal	solution	is	to	use	
the	grid	approach.	We	then	use	the	grid	approach	as	a	reference	tool.	Briefly,	this	approach	
requires	first	to	compute	the	reduction	of	poverty	for	all	potential	combinations	of	transfers,	
and	then	to	seek	the	combination	that	reduces	the	most	of	the	total	poverty.	However,	this	
approach	is	time	consuming.	For	instance,	if	the	number	of	the	partitions	is	100	and	we	have	
4	groups,	the	number	of	the	different	combinations	is	equal	to:	103!/(100!*3!)	=	176	851.6		

Using	the	same	data	as	before,	we	did	a	test	on	three	groups	among	the	seven	socio‐economic	
groups	by	using	a	grid	partition	of	100	(if	all	seven	groups	were	used	as	before,	a	total	of	
about	1.5*1015	computations	would	have	been	required).	The	following	tables	(Table	7	and	
Table	8)	show	the	optimal	transfers	for	a	total	per	capita	budget	of	4000.		

	 	

                                                            
6 In general, the number of combinations is equal to: 
 1 !/ ! 1 ! , where  is the number of partitions and G the number of groups.  
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Table	7:	Targeting	Headcount	index,	grid	VS	data‐graph	approach	

	 Approach	

Group	 Grid	 Data‐	graph	
	 Optimal	transfer	

Crop	farmer	 80.00	 56.85	

Subsistence	farmer	 3,920.00	 3,943.15	

Inactive	 0.00	 0.00	

	 Poverty	reduction	

Total	reduction	 ‐3.67407%	 ‐3.67755%	
Source:	authors’	elaboration	based	on	the	1998	Enquête	Prioritaire	(EP2)	from	Burkina	Faso.	

	
Table	8:	Targeting	Poverty	Severity	Index,	grid	VS	data‐graph	approach	

	 Approach	

Group	 Grid	 Data‐	graph	

	 Optimal	transfer	
Other	type	of	earner	 240	 254.84	

Wage‐earner‐public	sec.	 0.00	 0.00	

Inactive	 3760.00	 3745.16	

	 Poverty	reduction	

Total	reduction	 ‐0.007647	 	‐0.007647	
Source:	authors’	elaboration	based	on	the	1998	Enquête	Prioritaire	(EP2)	from	Burkina	Faso.	

The	two	examples	above	confirm	the	validity	of	our	algorithm	to	find	the	optimal	transfers	
for	any	poverty	index.		

	

3.6 LOCAL	AND	GLOBAL	OPTIMA	

For	the	case	of	multiple	local	optima	and	non‐convexity	of	the	objective	function	(reduction	
in	 total	 poverty),	 differently	 from	 the	 Newton‐Raphson	method,	 our	 algorithm	 allows	 to	
reach	 the	 global	 optimum.	 In	 fact,	 the	 former	methodology	 requires	 decreasing	marginal	
returns	of	the	objective	function.	For	the	headcount,	the	marginal	reduction	can	be	a	non‐
decreasing	function,	which	makes	the	Newton‐Raphson	algorithm	inefficient.	By	considering	
all	possible	 levels	of	 transfer,	we	try	 to	overcome	the	non‐convexity	problem.	Specifically,	
based	on	 the	gradual	attribution	of	 the	amounts	as	 suggested	 in	our	 algorithm,	we	 try	 to	
mimic	the	convex	form	of	the	marginal	reduction	in	the	objective	function.	In	other	terms,	the	
first	attributed	amounts	of	transfers	must	generate	the	highest	reduction	levels	in	poverty.	

The	 Newton‐Raphson	 algorithm	 is	mainly	 related	 to	 the	 functional	 form	 of	 the	 objective	
function.	For	instance,	with	a	strictly	concave	function,	starting	from	the	initial	values	of	the	
arguments	of	 interest,	 the	marginal	change	 in	 the	objective	 function	always	decreases	 (or	
increases).	In	fact,	the	idea	is	to	change	the	parameters	gradually	until	we	get	to	the	optimum	
and	where	the	marginal	change	of	the	objective	function	converges	to	0.	Unfortunately,	some	
popular	poverty	indices	are	not	strictly	convex	(or	quasi‐convex).	In	addition,	the	set	of	the	
budgetary	constraints	makes	the	convergence	to	the	optimal	solution	more	tedious.		

To	better	present	this	idea,	below	we	show	the	reduction	in	headcount	using	the	same	data	
of	Burkina	Faso.	Differently	from	the	previous	example,	and	for	simplicity	of	exposition,	we	
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only	keep	the	two	population	groups	(Crop	farmers	and	Inactive)	which	received	transfers	
as	shown	in	Table	6.	If	the	population	per	capita	transfer	is	4000,	we	have	that	 4000
.	Thus,	we	can	seek	the	maximum	reduction	in	poverty	based	on	 	only.		

Figure	 3	 shows	 the	 reduction	 in	 poverty	 for	 different	 combinations	 of	 ( , ).	 As	we	 can	
observe,	our	objective	function	is	not	strictly	convex,	i.e.	for	higher	levels	of	 poverty	should	
not	be	higher.		

Figure	3:	Headcount	Poverty	reduction,	local	and	global	optima	along	the	transfer’s	partitions	

	
Source:	authors’	elaboration	

Assume	that	we	reached	the	optimal	solution	(in	our	example	above,	it	is	for	 	roughly	equal	
to	3,200);	in	such	a	situation	it	is	expected	that	the	average	reduction	in	poverty	per	dollar	
spent	will	be	the	highest	compared	to	any	other	combination	of	transfers.	This	result	is	also	
valid	for	the	case	of	convex	objective	functions.	Indeed,	we	can	converge	to	this	solution	by	
seeking	the	groups	that	generate	the	maximum	average	reduction	in	poverty	per	dollar	spent	
at	 each	 sequence.	 This	 is	 what	 the	 algorithm	 we	 proposed	 in	 this	 paper	 does.	 Hence,	
differently	 from	the	Newton‐Raphson	algorithm,	by	considering	 the	different	 levels	of	 the	
transfer	at	each	sequence,	we	are	able	to	overcome	the	problem	of	the	local	optima	and	we	
converge	quickly	to	the	global	optimum.			

	

4. AN	ALTERNATIVE	TARGETING	METHOD:	THE	PROXY	MEANS	TEST	(PMT)	

It	is	useful	to	compare	the	effectiveness	of	our	algorithm	to	a	common	targeting	approach	
such	as	the	proxy‐means	test.	Before	moving	to	this	comparison,	it	can	be	worthy	to	quickly	
remind	a	few	things	on	how	the	PMT	works.	

In	the	real	life,	targeting	indicators	 	for	household	h	can	be	several,	such	as	the	age,	the	
education	 level,	 the	region,	etc.	Also,	 the	 indicators	can	be	 in	discrete	or	continuous	form.	
Assume	that	the	proposed	application	 	 is	used	to	predict	 the	 level	of	 income	starting	
from	a	set	of	indicators	 	such	that:		

	 , 		 	 	 	 	 	 	 (11)	
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The	 error	 , 	 depends,	 inter	 alias,	 on	 the	 application	 (functional	 form	 and	 estimation	
method),	as	well	as	the	quality	of	the	set	of	indicators	 .	In	a	developing	country	context	
household	income	is	not	generally	observed.	As	originally	suggested	by	Glewwe	(1992),	we	
can	use	household	survey	datasets	reporting	household	income	and	a	set	of	indicators,	and	
easily	estimate	the	household	income	by	an	OLS	estimation.	The	estimated	coefficients	are	
then	used	to	determine	the	eligibility	of	the	applicants	to	any	anti‐poverty	program.	Other	
empirical	works	have	suggested	different	econometric	models	in	which,	for	example,	more	
importance	is	given	to	a	specific	income	percentile.	For	instance,	we	can	give	more	weight	to	
the	poor	group	or	to	those	that	are	close	to	the	poverty	line	(Muller	and	Bibi,	2010).			

As	well	known,	imperfect	targeting	generates	two	types	of	errors:	type	I	error	occurs	when	
we	incorrectly	predict	as	non‐poor	some	individuals	who	are	actually	poor	(exclusion	error);	
type	II	error	is	when	we	include	as	poor	some	individuals	who	are	actually	not	poor	(inclusion	
error).	Weighted	regressions	giving	more	weight	to	one	group	like	the	poorest	decile	or	those	
just	below	the	poverty	line	(to	the	detriment	of	another	group)	only	reduces	one	type	of	error,	
but	it	increases	the	other	one.	To	better	explain	this	issue,	assume	that	we	use	a	weight	that	
is	equal	to	one	for	the	poor	and	zero	for	the	non‐poor.	Obviously,	the	estimated	coefficients	
are	lower	compared	to	those	using	the	whole	population.	Thus,	we	underestimate	incomes	
and	 it	 is	 expected	 that	 the	 error	 of	 type	 I	 converges	 to	 zero	 (all	 non‐poor’s	 incomes	 are	
underestimated,	 thus	 we	 have	 a	 greater	 probability	 to	 identify	 the	 real	 poor	 as	 poor).	
However,	the	trade‐off	is	that	we	incorrectly	predict	as	poor	those	people	who	are	actually	
not	poor.	As	for	any	program	evaluation,	social	efficiency	requires	a	redistributive	efficiency	
(i.e.,	 reduction	 of	 type	 I	 error	 by	 including	 the	 largest	 possible	 number	 of	 poor	 into	 the	
program),	and	the	economic	efficiency	(i.e.,	reduction	of	type	II	error,	and	then	the	cost	of	
wrongly	targeting	the	non‐poor).		

In	what	follows,	we	use	a	true	subsample	of	1,000	observations	and	we	select	the	level	of	the	
poverty	line	to	have	a	sufficiently	large	group	of	poor	(about	45.7	%).	We	regress	the	log	of	
the	per	capita	expenditures	on	a	set	of	six	indicators	(household	size,	sex,	age	and	level	of	
education	of	the	household	head,	living	area	and	regions).	The	OLS	model	gives	an	R2	of	about	
0.54.	The	first	line	in	Table	9	shows	that,	using	the	OLS	method,	33.28%	of	the	population	
that	are	truly	poor	are	correctly	identified	as	poor.	When	only	the	observations	of	the	poor	
are	 used	 (by	 assigning	 a	 weight	 equal	 to	 1	 for	 all	 those	 below	 the	 poverty	 line,	 and	 0	
otherwise),	the	error	of	type	I	is	largely	reduced	to	the	detriment	of	the	error	of	type	II.	The	
inverse	is	observed	when	the	estimation	focuses	on	the	non‐poor	group.	The	last	line	of	the	
table	shows	the	results	obtained	through	a	quantile	regression	model	at	a	percentile	that	is	
equal	to	the	headcount	ratio.	Even	with	the	quantile	regression	estimation,	the	sum	of	the	
two	errors	is	higher	than	what	found	with	the	simple	OLS.			

Table	9:	True	status	Versus	Estimated	status,	by	different	methods	

Method	
(0,0)	

	
(1,0)

ERROR_I	
(0,1)

ERROR_II	
(1,1)
	

OLS	 42.93	 12.42	 11.38	 33.28	

w=1	if	 	 5.99	 0.47	 48.32	 45.22	

w=1	if	 	 53.41	 37.5	 0.9	 8.2	

QREG(H0)	 42.23	 11.93	 12.08	 33.76	

Source:	authors’	elaboration	based	on	1,000	observations	sampled	from	the	1998	Enquête	Prioritaire	
(EP2)	from	Burkina	Faso.	
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As	a	useful	exercise,	we	estimate	the	contribution	by	each	indicator	to	the	decrease	in	the	
sum	of	the	two	errors.	This	can	be	used	to	select	pertinent	indicators.	To do so (1) we estimate 
the OLS model with all of the explanatory variables except the explanatory variable of interest, and 
then we compute the sum of the two errors of targeting (SER1); (2) we estimate the OLS model 
with all of the explanatory variables including the explanatory variable of interest, and then we 
compute the sum of the two errors of targeting (SER2); (3) the contribution of the explanatory 
variable refers to the decrease in the sum of the two errors after including the explanatory variable 
of interest (Contribution = SER2-SER1). The results of this exercise for the OLS model are reported 
in Table 10.	

	Table	10:	Contribution	of	each	indicator	to	the	decrease	in	the	sum	of	the	two	errors	of	targeting	

Indicator	 contribution	

Region	 ‐1.74	

Sex	 ‐1.33	

Education -2.45 

Age	 ‐0.48	

Area	 ‐2.56	

HH	size	 ‐5.53	
Source:	authors’	elaboration	based	on	1,000	observations	sampled	from	the	1998	Enquête	Prioritaire	
(EP2)	from	Burkina	Faso.	

	

5. POVERTY	TARGETING	MEASURES	AND	COMPARISON	BETWEEN	OGT	AND	PMT	

5.1 THE	QUALITY	OF	A	TARGETING	INDICATOR	

The	quality	of	targeting	indicators	(like	the	population	group	indicator	in	our	case)	depends	
on	the	form	of	the	poverty	index	of	interest,	on	the	distribution	of	incomes	and	on	the	level	
of	the	budget	allocated	to	cash	transfers.	Denote	by	 		the	household	type	to	be	targeted	(e.g.,	
according	to	the	region	of	residence	or	the	age	groups	of	its	members),	or	targeting	indicator.	
Let	 ∗ , ; 	be	the	maximum	possible	reduction	in	poverty	with	per	capita	transfer	 	and	
and	assuming	that	the	policy	maker	has	perfect	information	on	the	individual	welfare	 .	Also,	
let	 ∗ , ; 	 be	 the	maximum	possible	 reduction	 in	 poverty	with	 per	 capita	 transfer	 	
when	individuals	are	targeted	based	on	the	indicator	 .	The	quality	of	the	targeting	indicator	
	is:	

, ;
∗ , ; 	
∗ ; ; 	

	 	 	 	 	 	 	 	 (12)	

The	 ∗ , ; 	 can	 be	 estimated	 using	 standard	 household	 surveys.	 The	 quality	
index		 , ; 	helps	to	select	the	appropriate	targeting	indicators.	In	the	example	provided	
above	 with	 the	 graph‐based	 algorithm,	 the	 quality	 of	 the	 targeting	 indicator	 “economic	
groups”	is	estimated	at	14.699%	(see	the	results	reported	in	Table	6	–	bottom	panel).	

	

5.2 PERFECT	TARGETING,	POVERTY	REDUCTION	AND	PERFORMANCE	OF	TARGETING	METHODS	

Define	the	 ∗ , ; 	function.	Given	a	continuous	distribution	of	incomes,	the	maximum	
reduction	in	headcount	is	equal	to:	
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∗ , ; 0 	 	 	 	 	 	 	 (13)	

where	 	is	the	corresponding	income	such	that:	

	 	 	 	 	 	 	 	 	 (14)	

Thus,	for	the	headcount	index,	the	transfer	will	be	equal	to	the	distance	between	the	poverty	
line	and	the	income,	and	the	transfer	should	be	targeted	in	priority	to	those	with	incomes	
close	to	the	poverty	line.	When	 1,	we	have	that:	

∗ , ; 1 	 	 	 	 	 	 (15)	

where	 	is	the	corresponding	income	such	that:	

	 			and	 	 	 	 	 	 	 (16)	

Thus,	 to	 maximize	 the	 reduction	 in	 the	 poverty	 gap,	 transfers	 should	 be	 prioritized	 to	
individuals	 with	 the	 largest	 poverty	 gaps.	 This	 would	 avoid	 transfer	 loss	 for	 those	 with	
incomes	 close	 to	 the	poverty	 line	 and	 that	would	 go	well	 beyond	 this	 threshold	 after	 the	
transfer.	The	optimization	with	 1	is	also	valid	for	poverty	indices	of	higher	orders.		

Illustrative	example:	as	shown	in	Table	11,	assume	that	we	have	a	population	of	six	poor	
individuals.	The	poverty	line	is	assumed	to	be	equal	to	11,	and	the	per	capita	transfer	is	1$	
(the	total	budget	of	transfers	of	6$).	

Table	11:	Optimal	transfer	with	 	and	 	
#	
	
	

Income	
	
	

Poverty	
gap	
		

Optimal	transfer		

	 	

1	 0	 10	 0	 4	
2	 2	 8	 0	 2	
3	 3	 7	 0	 0	
4	 7	 3	 3	 0	
5	 8	 2	 2	 0	
6	 9	 1	 1	 0	

Source:	authors’	elaboration	

For	this	example,	we	find	that:	 1 	=	7	and		 1 	=	3.		

Let	 now	denotes	 by	 	 a	 given	method	 for	 poverty	 targeting	 optimisation	 and	 by	 ∗	 the	
method	that	generates	the	optimal	reduction	in	poverty.	Generalizing	what	we	had	in	(7)	for	
the	PMT	method,	given	 the	 indicator	 	 (for	 instance,	 the	proxy	means	 test	method	or	 the	
optimal	 group	 targeting),	 the	performance	of	method	 ( )	 in	 terms	of	 optimizing	poverty	
reduction	is:		

, , ;
, ; 	

∗ , ; 	
	 	 	 	 	 	 	 (17)	

The	performance	index		 , , ; 	can	be	used	to	validate	the	pertinence	of	the	method	 	
or	to	show	its	limits.		
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5.3 OTHER	POPULAR	MEASUREMENTS	OF	TARGETING	PERFORMANCE		

Other	measurements	of	targeting	performance	are:	

Inclusion	 Error	 Rate	 (IER):	 it	 is	 equal	 to	 the	 proportion	 of	 non‐poor	 that	 are	 wrongly	
targeted:	

	 	 	 	 	 	 	 	 (18)	

Such	index	helps	in	monitoring	the	economic	efficiency	of	the	program.		

	

Exclusion	Error	Rate	(EER):	it	is	equal	to	the	poor	that	we	fail	to	target.	

|
	 	 	 	 	 	 	 	 (19)	

This	index	helps	to	monitor	the	redistribution	efficiency	of	the	program.		

	

Normalized	Targeting	Differential	(NTG):	

It	is	defined	as	the	average	transfer	within	the	poor	group	minus	that	of	the	non‐poor	

	

| 	 |
	 	 	 	 	 	 	 (20)	

In	the	case	of	programs	with	a	constant	lump‐sum	transfer,	we	have	that:		

	 | 	–	 | )	 	 	 	 	 (21)	

	

The	NTG	ranges	between	‐1	(imperfect	targeting)	and	1	(perfect	targeting),	depending	on	
the	probability	 	of	estimating	correctly	or	incorrectly	the	welfare	variable		

	

5.4 COMPARING	THE	PERFORMANCE	OF	THE	OGT	AND	PMT	METHODS.	

It	is	now	interesting	to	compare	the	PMT	approach	versus	the	optimal	group	targeting	(OGT).	
Recently,	this	issue	was	largely	investigated	by	Brown	et	al.	(2018).	This	work	finds	that	their	
OGT	approach	shows	basically	the	same	levels	of	efficiency	compared	to	the	PMT	approach.	
However,	 their	results	are	applicable	only	 to	convex	 indicators	such	as	 the	Watts	poverty	
index.	 In	 what	 follows,	 we	 compare	 the	 performance	 of	 targeting	 of	 our	 proposed	 OGT	
method	compared	with	the	PMT	approach.	

Briefly,	the	advantage	of	the	OGT	is	the	possibility	of	overcoming	all	modelling‐related	issues	
(functional	 form,	weights,	etc.)	and	of	using	nonlinear	optimization	algorithms	in	order	to	
find	the	optimal	targeting	(see,	for	instance,	Elbers	et	al.,	2007).	Its	inconvenience	may	reside	
in	the	limited	number	of	indicators	that	can	be	used	and	on	the	computational	burden	to	find	
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the	optimum.	On	the	other	side,	the	PMT	approach	is	a	simple	method	that	allows	to	use	a	
relatively	 large	number	 of	 indicators.	However,	 its	 limitation	 is	 related	 to	 its	 linear	 form.	
Obviously,	the	choice	between	the	different	methods	may	depend	on	different	aspects,	like	
the	form	of	the	poverty	index	to	be	reduced,	the	design	and	the	objectives	of	the	targeting	
program,	etc.		

In	addition	to	technical	considerations,	in	the	real	life,	the	selection	of	the	targeting	indicators	
can	depend	on	various	issues,	such	as	social	desirability	of	using	such	indicators,	cost	and	
feasibility	of	collecting	them.	

In	what	follows,	we	compare	the	results	of	the	OGT	with	that	of	the	PMT.	For	this	end,	we	use	
again	the	true	subsample	which	was	already	used	in	the	earlier	examples.	Let	first	assume	
that	 the	 policy‐maker	 disposes	 of	 only	 two	 categorical	 variables,	 which	 are	 the	 level	 of	
education	of	the	household	head	(8	modalities)	and	the	living	area	(2	modalities).	For	the	
OGT	approach,	we	then	construct	a	group	variable	with	the	possible	combinations	of	the	two	
indicators.	This	generates	a	group	variable	with	16	modalities	which	can	be	used	to	estimate	
the	optimal	targeting	and	the	subsequent	reduction	in	total	poverty.	For	the	PMT	approach,	
we	start	by	estimating	the	semi‐log	model	with	the	two	categorical	variables,	and	then	predict	
the	per	capita	expenditures.		

Table	12:	Total	reduction	in	poverty	(in	%)	
Method	 	=0	 	=1	 	=2	

OGT	 9.14	 10.55	 17.87	

PMT	 3.92	 7.60	 13.06	
, , ;
, , ;

	 42.89	 72.04	 73.08	

Source:	authors’	elaboration	

As	it	is	shown	in	table	12,	the	OGT	approach	is	a	more	efficient	method	compared	to	the	PMT	
because	it	allows	a	larger	reduction	in	poverty	irrespective	of	the	value	of	 .	Given	that	the	
administrative	costs	for	implementing	the	PMT‐based	transfer	are	expected	to	be	higher	than	
the	OGT‐based	approach,	the	OGT	method	would	be	even	more	efficient.	

	

6. CONCLUDING	REMARKS	

Especially	in	developing	countries,	the	policy	maker	does	not	observe	the	individual	welfare	
of	 its	 population,	 so	 anti‐poverty	 interventions	 are	 generally	 disappointing	 in	 terms	 of	
inclusion	of	the	real	poor	and	exclusion	of	the	non‐poor.	Also,	while	universal	programs	reach	
all	the	poor	but	are	often	unfeasible	from	a	budgetary	point	of	view,	means‐tested	targeted	
interventions	 may	 be	 expensive	 and	 long	 to	 implement,	 and	 administratively	 difficult	 to	
manage.	In	this	paper,	we	propose	a	new	anti‐poverty	group‐targeting	algorithm	in	the	case	
of	fixed	budget	and	imperfect	information	on	household	welfare.	The	policy‐maker	generally	
disposes	of	information	on	groups	of	individuals,	such	as	regions	or	age	groups.	Under	such	
circumstances,	the	goal	of	the	policy	maker	is	to	find	the	optimal	group	transfers	that	reduce	
the	most	 the	 aggregate	 poverty.	 The	 existing	 literature	 on	 antipoverty	 optimal	 targeting	
design	was	limited	to	the	case	of	quasi‐convex	indices	such	as	the	squared	poverty	gap.	This	
paper	expands	this	literature	by	developing	a	new	numerical	algorithm	(along	with	a	newly	
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developed	Stata	package)	for	estimating	the	optimal	group	transfers	which	reduce	the	most	
any	additive	poverty	indices,	like	the	FGT	class	of	poverty	indices.	Tested	on	household	data	
from	Burkina	Faso,	we	found	that	our	proposed	algorithm	is	fairly	more	efficient	than	a	PMT‐
based	 targeting	approach,	 irrespective	of	 the	poverty	 indicator.	Also,	 the	efficiency	of	our	
algorithm	generally	increases	with	finer	partitions	of	the	group	per	capita	transfer.	Finally,	
the	algorithm	proposed	here	replicates	quite	closely	the	performance	obtained	through	the	
grid	 approach	 (our	 benchmark	 tool)	 and	 is	 able	 to	 converge	 to	 the	 global	 optimum	 even	
when,	 like	 in	 the	 headcount	 poverty	 index,	 there	 are	multiple	 possible	 local	 optima.	 The	
empirical	 exercise	 presented	 in	 this	 paper	 is	 just	 illustrative	 and	 serves	 to	 show	 the	
performance	of	the	new	algorithm	in	terms	of	optimal	poverty	targeting.	Appropriate	group	
identification	should	be	defined	together	with	local	policy‐makers	on	a	case‐by‐case	basis.
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Annex A 
The Stata command 
ogtpr exppc, hgroup(gse) hsize(size) alpha(0) pline(80000) trans(4000) ered(1) part(1000)  
 
The displayed results: 
Main Information 
Number of observations    :  8478       
Time of computation       :  8.20      second(s) 
Per capita transfer       :  4000.00 
Used per capita transfer  :  4000.00 
Household size            :  size 
Sampling weight           :  weight 
Group variable            :  gse 
Parameter alpha           :  0.00 
 
Algorithm sequences  
Sequence ...1:   Remaining p.c. budget   3952.326 over   4000.000 
Sequence ...2:   Remaining p.c. budget   3878.941 over   4000.000 
Sequence ...3:   Remaining p.c. budget   3807.127 over   4000.000 
Sequence ...4:   Remaining p.c. budget      0.000 over   4000.000 
 
 
Optimal Group Transfers 
  +---------------------------------------------------------------------------------------------+ 
  |                    Group   |      Fgt Index     Population    Optimal G.P.C.    Optimal P.C.| 
  |                            |                       Share           Transfer        Transfer | 
  |----------------------------+----------------------------------------------------------------| 
  |Wage-earner (public sector) |           0.075           4.140           0.000           0.000| 
  |Wage-earner (private sector)|           0.139           2.904           0.000           0.000| 
  |Artisan or trader           |           0.155           5.580           0.000           0.000| 
  |Other type of earner        |           0.355           0.569           0.000           0.000| 
  |Crop farmer                 |           0.492          16.781       22971.742        3854.801| 
  |Subsistence farmer          |           0.606          65.355           0.000           0.000| 
  |Inactive                    |           0.463           4.672        3107.906         145.199| 
  +---------------------------------------------------------------------------------------------+ 
 
Total Poverty Reduction 
------------------------------------------------------------------------------------------ 
Variable |   Estimate   Std. Err.       t     P>|t|       [95% Conf. interval]  Pov. line 
---------+-------------------------------------------------------------------------------- 
   exppc |  .5180611    .0109517   47.3042   0.0000       .4965334    .5395888     80000 
exppc_tr |  .4765408    .0112242   42.4565   0.0000       .4544774    .4986042     80000 
---------+-------------------------------------------------------------------------------- 
    diff.| -.0415202    .0046131   -9.0005   0.0000      -.0505882   -.0324522      --- 
------------------------------------------------------------------------------------------ 
 
Targeting quality 
    - Reduction with imperfect targeting (in %)      :   -4.152 
    - Reduction with  perfect targeting (in %)       :  -28.247 
    - The quality of the targeting indicator (in %) :   14.699 
 
Targeting by transfers and poverty status 

           |       Targeted 
      Poor |        No        Yes |     Total 
-----------+----------------------+---------- 
        No |     37.17      11.03 |     48.19  
       Yes |     41.38      10.43 |     51.81  
-----------+----------------------+---------- 
     Total |     78.55      21.45 |    100.00  

 

	


